Skip to content

Natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution.

License

Notifications You must be signed in to change notification settings

stdlib-js/stats-base-dists-kumaraswamy-logpdf

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Logarithm of Probability Density Function

NPM version Build Status Coverage Status

Evaluate the natural logarithm of the probability density function for a Kumaraswamy's double bounded distribution.

The probability density function (PDF) for a Kumaraswamy's double bounded random variable is

$$f(x;a,b)= \begin{cases} abx^{{a-1}}(1-x^{a})^{{b-1}} & \text{ for } x \in (0,1) \\ 0 & \text{ otherwise } \end{cases}$$

where a > 0 is the first shape parameter and b > 0 is the second shape parameter.

Installation

npm install @stdlib/stats-base-dists-kumaraswamy-logpdf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var logpdf = require( '@stdlib/stats-base-dists-kumaraswamy-logpdf' );

logpdf( x, a, b )

Evaluates the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var y = logpdf( 0.5, 1.0, 1.0 );
// returns 0.0

y = logpdf( 0.5, 2.0, 4.0 );
// returns ~0.523

y = logpdf( 0.2, 2.0, 2.0 );
// returns ~-0.264

y = logpdf( 0.8, 4.0, 4.0 );
// returns ~0.522

y = logpdf( -0.5, 4.0, 2.0 );
// returns -Infinity

y = logpdf( -Infinity, 4.0, 2.0 );
// returns -Infinity

y = logpdf( 1.5, 4.0, 2.0 );
// returns -Infinity

y = logpdf( +Infinity, 4.0, 2.0 );
// returns -Infinity

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN

y = logpdf( 0.0, NaN, 1.0 );
// returns NaN

y = logpdf( 0.0, 1.0, NaN );
// returns NaN

If provided a <= 0, the function returns NaN.

var y = logpdf( 2.0, -1.0, 0.5 );
// returns NaN

y = logpdf( 2.0, 0.0, 0.5 );
// returns NaN

If provided b <= 0, the function returns NaN.

var y = logpdf( 2.0, 0.5, -1.0 );
// returns NaN

y = logpdf( 2.0, 0.5, 0.0 );
// returns NaN

logpdf.factory( a, b )

Returns a function for evaluating the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var mylogpdf = logpdf.factory( 0.5, 0.5 );

var y = mylogpdf( 0.8 );
// returns ~-0.151

y = mylogpdf( 0.3 );
// returns ~-0.388

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( '@stdlib/stats-base-dists-kumaraswamy-logpdf' );

var a;
var b;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu();
    a = ( randu()*5.0 ) + EPS;
    b = ( randu()*5.0 ) + EPS;
    y = logpdf( x, a, b );
    console.log( 'x: %d, a: %d, b: %d, ln(f(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.