Skip to content

Weibull distribution probability density function (PDF).

License

Notifications You must be signed in to change notification settings

stdlib-js/stats-base-dists-weibull-pdf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Probability Density Function

NPM version Build Status Coverage Status

Weibull distribution probability density function (PDF).

The probability density function (PDF) for a Weibull random variable is

$$f(x;\lambda,k) = \begin{cases} \frac{k}{\lambda}\left (\frac{x}{\lambda} \right)^{k-1}e^{-(x/\lambda)^k} & x \geq 0 \\ 0 & x < 0\end{cases}$$

where lambda > 0 and k > 0 are the respective scale and shape parameters of the distribution.

Installation

npm install @stdlib/stats-base-dists-weibull-pdf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var pdf = require( '@stdlib/stats-base-dists-weibull-pdf' );

pdf( x, k, lambda )

Evaluates the probability density function (PDF) for a Weibull distribution with shape parameter k and scale parameter lambda.

var y = pdf( 2.0, 1.0, 0.5 );
// returns ~0.037

y = pdf( -1.0, 4.0, 2.0 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = pdf( NaN, 0.0, 1.0 );
// returns NaN

y = pdf( 0.0, NaN, 1.0 );
// returns NaN

y = pdf( 0.0, 0.0, NaN );
// returns NaN

If provided k <= 0, the function returns NaN.

var y = pdf( 2.0, 0.0, 1.0 );
// returns NaN

y = pdf( 2.0, -1.0, 1.0 );
// returns NaN

If provided lambda <= 0, the function returns NaN.

var y = pdf( 2.0, 1.0, 0.0 );
// returns NaN

y = pdf( 2.0, 1.0, -1.0 );
// returns NaN

pdf.factory( k, lambda )

Returns a function for evaluating the PDF for a Weibull distribution with shape parameter k and scale parameter lambda.

var mypdf = pdf.factory( 2.0, 10.0 );

var y = mypdf( 12.0 );
// returns ~0.057

y = mypdf( 5.0 );
// returns ~0.078

Examples

var randu = require( '@stdlib/random-base-randu' );
var pdf = require( '@stdlib/stats-base-dists-weibull-pdf' );

var lambda;
var k;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    lambda = randu() * 10.0;
    k = randu() * 10.0;
    y = pdf( x, lambda, k );
    console.log( 'x: %d, k: %d, λ: %d, f(x;k,λ): %d', x.toFixed( 4 ), k.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}

C APIs

Usage

#include "stdlib/stats/base/dists/weibull/pdf.h"

stdlib_base_dists_weibull_pdf( x, k, lambda )

Evaluates the probability density function (PDF) for a Weibull distribution with shape parameter k and scale parameter lambda.

double out = stdlib_base_dists_weibull_pdf( 2.0, 1.0, 1.0 );
// returns ~0.037

The function accepts the following arguments:

  • x: [in] double input value.
  • k: [in] double shape parameter.
  • lambda: [in] double scale parameter.
double stdlib_base_dists_weibull_pdf( const double x, const double k, const double lambda );

Examples

#include "stdlib/stats/base/dists/weibull/pdf.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v*(max-min) );
}

int main( void ) {
    double lambda;
    double x;
    double k;
    double y;
    int i;

    for ( i = 0; i < 25; i++ ) {
        x = random_uniform( 0.0, 10.0 );
        lambda = random_uniform( 0.0, 10.0 );
        k = random_uniform( 0.0, 10.0 );
        y = stdlib_base_dists_weibull_pdf( x, k, lambda );
        printf( "x: %lf, k: %lf, λ: %lf, f(x;k,λ): %lf\n", x, k, lambda, y );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.