Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: improve README examples of stats/base/dists/geometric namespace #1801

Merged
merged 2 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 88 additions & 2 deletions lib/node_modules/@stdlib/stats/base/dists/geometric/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,10 +112,96 @@ y = dist.logpmf( 2.3 );
<!-- eslint no-undef: "error" -->

```javascript
var objectKeys = require( '@stdlib/utils/keys' );
var geometricRandomFactory = require( '@stdlib/random/base/geometric' ).factory;
var negativeBinomial = require( '@stdlib/stats/base/dists/negative-binomial' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var variance = require( '@stdlib/stats/base/variance' );
var linspace = require( '@stdlib/array/base/linspace' );
var mean = require( '@stdlib/stats/base/mean' );
var abs = require( '@stdlib/math/base/special/abs' );
var geometric = require( '@stdlib/stats/base/dists/geometric' );

console.log( objectKeys( geometric ) );
// Define the success probability:
var p = 0.3; // Probability of success on each trial

// Generate an array of x values (number of failures before first success):
var x = linspace( 0, 10, 11 ); // Geometric distribution is discrete

// Compute the PMF for each x:
var geometricPMF = geometric.pmf.factory( p );
var pmf = filledarrayBy( x.length, 'float64', geometricPMF );

// Compute the CDF for each x:
var geometricCDF = geometric.cdf.factory( p );
var cdf = filledarrayBy( x.length, 'float64', geometricCDF );

// Output the PMF and CDF values:
console.log( 'x values:', x );
console.log( 'PMF values:', pmf );
console.log( 'CDF values:', cdf );

// Compute statistical properties:
var theoreticalMean = geometric.mean( p );
var theoreticalVariance = geometric.variance( p );
var theoreticalSkewness = geometric.skewness( p );
var theoreticalKurtosis = geometric.kurtosis( p );

console.log( 'Theoretical Mean:', theoreticalMean );
console.log( 'Theoretical Variance:', theoreticalVariance );
console.log( 'Skewness:', theoreticalSkewness );
console.log( 'Kurtosis:', theoreticalKurtosis );

// Generate random samples from the geometric distribution:
var rgeom = geometricRandomFactory( p );
var n = 1000;
var samples = filledarrayBy( n, 'float64', rgeom );

// Compute sample mean and variance:
var sampleMean = mean( n, samples, 1 );
var sampleVariance = variance( n, 1, samples, 1 );

console.log( 'Sample Mean:', sampleMean );
console.log( 'Sample Variance:', sampleVariance );

// Demonstrate the memoryless property:
var s = 2.0;
var t = 3.0;
var prob1 = ( 1.0 - geometric.cdf( s + t - 1.0, p ) ) /
( 1.0 - geometric.cdf( s - 1.0, p ));
var prob2 = 1.0 - geometric.cdf( t - 1.0, p );

console.log( 'P(X > s + t | X > s):', prob1 );
console.log( 'P(X > t):', prob2 );
console.log( 'Difference:', abs( prob1 - prob2 ) );

// Demonstrate that the sum of k independent geometric random variables follows a negative binomial distribution:
var k = 5;
function drawSum() {
var sum = 0;
var j;
for ( j = 0; j < k; j++ ) {
sum += rgeom();
}
return sum;
}
var sumSamples = filledarrayBy( n, 'float64', drawSum );

// Compute sample mean and variance for the sum:
var sumSampleMean = mean( n, sumSamples, 1 );
var sumSampleVariance = variance( n, 1, sumSamples, 1 );

// Theoretical mean and variance of Negative Binomial distribution:
var nbMean = negativeBinomial.mean( k, p );
var nbVariance = negativeBinomial.variance( k, p );

console.log( 'Sum Sample Mean:', sumSampleMean );
console.log( 'Sum Sample Variance:', sumSampleVariance );
console.log( 'Negative Binomial Mean:', nbMean );
console.log( 'Negative Binomial Variance:', nbVariance );

// Compare sample statistics to theoretical values:
console.log( 'Difference in Mean:', abs( nbMean - sumSampleMean ) );
console.log( 'Difference in Variance:', abs( nbVariance - sumSampleVariance ) );
```

</section>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,93 @@

'use strict';

var objectKeys = require( '@stdlib/utils/keys' );
var geometricRandomFactory = require( '@stdlib/random/base/geometric' ).factory;
var negativeBinomial = require( '@stdlib/stats/base/dists/negative-binomial' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var variance = require( '@stdlib/stats/base/variance' );
var linspace = require( '@stdlib/array/base/linspace' );
var mean = require( '@stdlib/stats/base/mean' );
var abs = require( '@stdlib/math/base/special/abs' );
var geometric = require( './../lib' );

console.log( objectKeys( geometric ) );
// Define the success probability:
var p = 0.3; // Probability of success on each trial

// Generate an array of x values (number of failures before first success):
var x = linspace( 0, 10, 11 ); // Geometric distribution is discrete

// Compute the PMF for each x:
var geometricPMF = geometric.pmf.factory( p );
var pmf = filledarrayBy( x.length, 'float64', geometricPMF );

// Compute the CDF for each x:
var geometricCDF = geometric.cdf.factory( p );
var cdf = filledarrayBy( x.length, 'float64', geometricCDF );

// Output the PMF and CDF values:
console.log( 'x values:', x );
console.log( 'PMF values:', pmf );
console.log( 'CDF values:', cdf );

// Compute statistical properties:
var theoreticalMean = geometric.mean( p );
var theoreticalVariance = geometric.variance( p );
var theoreticalSkewness = geometric.skewness( p );
var theoreticalKurtosis = geometric.kurtosis( p );

console.log( 'Theoretical Mean:', theoreticalMean );
console.log( 'Theoretical Variance:', theoreticalVariance );
console.log( 'Skewness:', theoreticalSkewness );
console.log( 'Kurtosis:', theoreticalKurtosis );

// Generate random samples from the geometric distribution:
var rgeom = geometricRandomFactory( p );
var n = 1000;
var samples = filledarrayBy( n, 'float64', rgeom );

// Compute sample mean and variance:
var sampleMean = mean( n, samples, 1 );
var sampleVariance = variance( n, 1, samples, 1 );

console.log( 'Sample Mean:', sampleMean );
console.log( 'Sample Variance:', sampleVariance );

// Demonstrate the memoryless property:
var s = 2.0;
var t = 3.0;
var prob1 = ( 1.0 - geometric.cdf( s + t - 1.0, p ) ) /
( 1.0 - geometric.cdf( s - 1.0, p ));
var prob2 = 1.0 - geometric.cdf( t - 1.0, p );

console.log( 'P(X > s + t | X > s):', prob1 );
console.log( 'P(X > t):', prob2 );
console.log( 'Difference:', abs( prob1 - prob2 ) );

// Demonstrate that the sum of k independent geometric random variables follows a negative binomial distribution:
var k = 5;
function drawSum() {
var sum = 0;
var j;
for ( j = 0; j < k; j++ ) {
sum += rgeom();
}
return sum;
}
var sumSamples = filledarrayBy( n, 'float64', drawSum );

// Compute sample mean and variance for the sum:
var sumSampleMean = mean( n, sumSamples, 1 );
var sumSampleVariance = variance( n, 1, sumSamples, 1 );

// Theoretical mean and variance of Negative Binomial distribution:
var nbMean = negativeBinomial.mean( k, p );
var nbVariance = negativeBinomial.variance( k, p );

console.log( 'Sum Sample Mean:', sumSampleMean );
console.log( 'Sum Sample Variance:', sumSampleVariance );
console.log( 'Negative Binomial Mean:', nbMean );
console.log( 'Negative Binomial Variance:', nbVariance );

// Compare sample statistics to theoretical values:
console.log( 'Difference in Mean:', abs( nbMean - sumSampleMean ) );
console.log( 'Difference in Variance:', abs( nbVariance - sumSampleVariance ) );
Loading