Our implementation of MultiPath++
- 🏎️CVPR2022 Workshop on Autonomous Driving website
- 📜Technical report
- 🥉Waymo Motion Prediction Challenge Website
- ❗Refactored code for our prize-winnig solution for Waymo Motion Prediction Challenge 2021
Stepan Konev
First we need to prepare data for training. The prerender script will convert the original data format into set of .npz
files each containing the data for a single target agent. From code
folder run
python3 prerender/prerender.py \
--data-path /path/to/original/data \
--output-path /output/path/to/prerendered/data \
--n-jobs 24 \
--n-shards 1 \
--shard-id 0 \
--config configs/prerender.yaml
Rendering is a memory consuming procedure so you may want to use n-shards > 1
and running the script a few times using consecutive shard-id
values
Once we have our data prepared we can run the training.
python3 train.py configs/final_RoP_Cov_Single.yaml
If you find this work interesting please ⭐️star and share this repo.
If you find this work useful please cite us
@misc{https://doi.org/10.48550/arxiv.2206.10041,
doi = {10.48550/ARXIV.2206.10041},
url = {https://arxiv.org/abs/2206.10041},
author = {Konev, Stepan},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {MPA: MultiPath++ Based Architecture for Motion Prediction},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}