Skip to content

Filter training data for neural machine translation model `on the fly` with reinforcement learning agent. Work based on previous research from Carnegie Mellon University (multi-DDS) and Johns Hopkins University (LASER score for data-sets from WMT-20)

License

Notifications You must be signed in to change notification settings

steventan0110/NMT_RL_Filter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Work Based on Multi-DDS repo

@inproceedings{wang2020multiDDS,
  title = {Balancing Training for Multilingual Neural Machine Translation},
  author = {Xinyi Wang, Yulia Tsvetkov, Graham Neubig},
  booktitle = {ACL},
  year = {2020},
}

Author: Weiting Tan, Start Date: Sept 15th, 2020

Objective: use reinforcement learning agent to filter (-on-the-fly-) training data for neural machine translation model

CLI Interface

  • sample script from job-script folder shown below:
python train.py data-bin/ted_8_related/ \
	  --task multilingual_translation \
	  --arch multilingual_transformer_iwslt_de_en \
	  --max-epoch 40 \
          --dataset-type "multi" \
          --lang-pairs "aze-eng,tur-eng,bel-eng,rus-eng,glg-eng,por-eng,slk-eng,ces-eng" \
	  --no-epoch-checkpoints \
	  --distributed-world-size 1 \
	  --share-decoder-input-output-embed --share-decoders --share-encoders \
	  --dropout 0.3 --attention-dropout 0.3 --relu-dropout 0.3 --weight-decay 0.0 \
	  --left-pad-source 'True' --left-pad-target 'False' \
	  --optimizer 'adam' --adam-betas '(0.9, 0.98)' --lr-scheduler 'inverse_sqrt_decay' \
	  --warmup-init-lr 1e-7 --warmup-updates 4000 --lr 2e-4 --lr-shrink 0.8 \
	  --criterion 'label_smoothed_cross_entropy' --label-smoothing 0.1 \
	  --max-tokens 4800 \
	  --update-freq 2 \
	  --seed 2 \
  	  --max-source-positions 150 --max-target-positions 150 \
  	  --save-dir $MODEL_DIR \
          --encoder-normalize-before --decoder-normalize-before \
          --scale-norm \
          --datasize-t 1 \
	  --update-language-sampling 1000 \
  	  --data-actor 'base' \
  	  --data-actor-lr 0.0001 \
  	  --data-actor-optim-step 200 \
          --utility-type 'ave' \
          --datasize-t 1 \
          --pretrain-data-actor \
          --pretrain-type "datasize" \
	  --log-interval 100 >> $MODEL_DIR/train.log 2>&1
  • pay special attention to the following:
    • arch multilingual_transformer, located in models folder, which is basically an extension on transformer model with litte variation to support multilingual trainining's setting
    • task multilingual_translation, extended on translation task, define the data loading, selection, etc.
    • data-actor controls the

Multilingual Transformer Model:

  • Base model is FairseqMultiModel:
    • BaseFairseqModel:
      • build_model has to be extended and implemented
      • extract_feature: similar to forward but only return feature, need a final map to vocab_size/output_dim
      • max_position: controls dthe maxlen supported by the model
      • other functions including make_generation_fast, from pretrained, etc, not checked in detail and should not need to modify
    • FairseqMultiModel:
      • init receives an encoder and a decoder with args, which are both dictionary {model_key: FairseqEncoder/Decoder}
      • use EncoderDecoder model to connect each pair
      self.models = nn.ModuleDict({
          key: FairseqModel(encoders[key], decoders[key])
          for key in self.keys
      })
      
      • buiild_shared_embeddings:
        • takes in callable build_embedding function to return
        return build_embedding(
        shared_dict, embed_dim, pretrained_embed_path
        )
        
        • take dict of language and their dict/vocab_token mapping, use it as shared_dict for function above
        • the dict has to be a joint dictionary for share-embedding
        • forward is same as regular EncoderDecoder, just wraped in a loop for keys (language ids)
  • build_model:
    • first take care of embedding, use a regular embedding layer and build it with shared_dict, embed_dim, padding_dimension as normal pytorch unit. Support an optional pretrained embedding as well
    • the shared embedding tokens are calculated using default MultiModel's build_shared_embedding as I described above, e.g:
    shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings(
                dicts=task.dicts,
                langs=task.langs,
                embed_dim=args.encoder_embed_dim,
                build_embedding=build_embedding,
                pretrained_embed_path=args.encoder_embed_path,
            )
    
    • Encoder and Decoder are called from TransformerEncoder and TransformerDecoder, which is an default implemetation of paper Attention is all you need, no need to change the model architecture for this research purpose but might try other archiecture that are LSTM based in the future.

Train, Trainer, and Task:

  • Train:

    • At first, the script will call the train.py script. train.py generally include following steps:
    • Pretrain Steps:
      • task.setup_task(args)
      • build model with model = task.build_model(args)
      • build criterion with criterion = task.build_criterion(args)
    • Training steps:
      • build trainer: trainer = Trainer(args, task, model, criterion)
      • load latest checkpoint if has any
      • optional: pretrain data_actor, unique to this paper's implementation
      • set up train meters
      • start training: (in a while loop, keep going until model converges or max-epoch/early stop reached)
        • call the train function: epoch_itr = train(args, trainer, task, epoch_itr, generator, filtered_maxpos_indices)
        • get validation loss: valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets, generator)
        • update learning rate: lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
        • save checkpoint
    • train function: (controls training for 1 epoch only), largely re-written by the author of DDS paper
      • check dds_select, if use dds selection, filter training data
      if epoch_itr.epoch == args.select_by_dds_epoch and args.select_by_dds_epoch > 0:
          epoch_itr, _ = trainer.get_filtered_train_iterator(epoch_itr.epoch, filtered_maxpos_indices=filtered_maxpos_indices)
      
      • in the process (train steps in one epoch):
        • call train_step from trainer which return the log_output
        • trainer call update_language_sampler => use reinforcement to influence data sampling
        log_output = trainer.train_step(samples, update_actor=update_actor)
        
        • get validate_loss and should_stop signal valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets, generator) and same the checkpoint (in original code, fairseq does not save checkpoint here)
  • Trainer:

    • in train.py, two function from traner is used: get_filtered_train_iterator and train_step, I will give detailed explanation of these two functions and their related utilities. The other important functions include pretrain_data_actor, update_language_sampler, update_language_sampler_multilin, etc.

    • init:

      • define args, task, meters, etc.
      • check which data actor to use: (the author implemented four customized data actor):
        • BaseActor: only contains a linear layer which return logits of dimension [language_size] => a distribution of data to load for each language
        • LanguageActor: using an embedding to convert language into an embedding_dimension defined by user and then project back to a distribution of languages
        • AveEmbActor: average embedding actor, use the source and target dictionary from task. Embed the source and target word, concat them and project to a dimension [#languages], representing the data distribution. This method takes the actual tokens into account.
      • set dev set iterator if data_actor_step_update is set,
      self.dev_itr = self.task.get_batch_iterator(
          dataset=self.task.dataset('valid'),....
          )[0]
      
    • get_train_iterator:

      • return EpochBatchIterator, bascially the same as the default implemetation by fairseq, use task.get_batch_iterator which uses the fairseq_task's function (the author modified source code)
      • details of modified get_batch_iterator:
        • input expanded with data_actor=None, trainer=None, data_filter_percentage=-1, filtered_maxpos_indices=None,
        • implement data filtering with data_utils:
        if data_filter_percentage > 0:
            indices = data_utils.filter_by_data_actor(indices, dataset, data_actor, data_filter_percentage, trainer=trainer)
        
        • filter_by_data_actor(indices, dataset, data_actor, data_filter_percentage=-1, trainer=None):
          • if not random data filter, call data actor to get a score (a distribution of data input of each language)
          itr = iterators.EpochBatchIterator(
              dataset=dataset,
              collate_fn=dataset.collater,
              batch_sampler=batch_sampler
          ).next_epoch_itr(shuffle=False)
          
          idx_start, idx_end = 0, 0
          scores = np.zeros(len(indices))
          ids = np.zeros(len(indices), dtype=np.int64)
          
          for i, sample in enumerate(itr):
              sample = trainer._prepare_sample(sample)
              sample = list(sample.values())[0]
          
              # score is of size B X 1
              score = data_actor(sample['net_input']['src_tokens'], sample['target']).data.cpu().numpy()
              idx_start = idx_end
          
              # update the batch range
              idx_end = idx_start + score.shape[0]
              scores[idx_start:idx_end] = score.ravel()
              ids[idx_start:idx_end] = sample['id'].data.cpu().numpy().ravel()
          
          # argsort is ascending order
          preserved_indices = np.argsort(scores)[int(len(indices)*data_filter_percentage):]
          indices = np.array(ids)[preserved_indices]
          
    • get_filtered_train_iterator:

      • basically the same as function above, with one extra parameter:data_filter_percentage=self.args.data_filter_percentage
      • adding the percentage will make the get_train_iterator call the data_actor_filter function shown above
    • train_step:

      • train_step(self, samples, dummy_batch=False, raise_oom=False, update_actor=True)
      • in side train_step, the task's train_step is called, passed in the sample, model, criterion, optimizer , etc.
      loss, sample_size, logging_output = self.task.train_step(
          sample, self.model, self.criterion, self.optimizer,
          ignore_grad, data_actor=data_actor, 
          loss_copy=cached_loss, data_actor_out=data_actor_out,
      )
      
      • then save the training gradient
      • if try to update data_actor:
        • use model to train on the valid sample and get valid's loss, etc
        • train again on the sample and get current loss and cached loss to update the reward reward = 1./eta * (cur_loss[k] - cached_loss[k]) and backward on the data_actor's network
    • update_language_sampler:

      • load in optimizer, data_actor, data_optimizer
      • like normal training, call task.train_step and save gradients. Then train on valid dataset and get the gradient, update the data actor as well as a simlarity probability => change the distribution of training set based the distribution
      self.task.dataset('train').update_sampling_distribution(sim_list)
      
      • seems like this function has error in variable name mismatch??? and where is the update_sampling_distribution?

Modification on data selection by data actor

  • Following num reset needed or not? The update_frequency and num reset work together. When resetting the epoch iterator, epoch_itr.next_epoch_itr is called with an offset=reset_idx*(args.update_language_sampling*args.update_freq[0]+1)
   if args.update_language_sampling > 0 and args.select_by_dds_epoch < 0 and (not args.data_actor_step_update):
        num_reset = len(epoch_itr.frozen_batches) // (args.update_language_sampling*args.update_freq[0]+1)
        datasize = args.update_language_sampling*args.update_freq[0]+1
        if num_reset * datasize < len(epoch_itr.frozen_batches):
            num_reset += 1
    else:
        num_reset = 1
        datasize = -1
  • use random filter on the data, train results are shown below:
model multilingual_transformer_iwslt_de_en, criterion LabelSmoothedCrossEntropyCriterion
| num. model params: 39704608 (num. trained: 39704608)
| training on 1 GPUs
| max tokens per GPU = 600 and max sentences per GPU = None
| no existing checkpoint found /export/b02/wtan/checkpoints/dds/ps-total/checkpoint_last.pt
| loading train data for epoch 0
| loaded 1022506 examples from: /export/b02/wtan/data-bin/ps-total/train.ps-en.ps
| loaded 1022506 examples from: /export/b02/wtan/data-bin/ps-total/train.ps-en.en
| /export/b02/wtan/data-bin/ps-total train ps-en 1022506 examples
data sampling with temperature 1 is [1.]
| WARNING: 24423 samples have invalid sizes and will be skipped, max_positions=OrderedDict([('ps-en', (150, 150))]), first few sample ids=[5038, 5039, 5040, 5041, 5042, 5043, 5044, 5045, 5046, 5047]
| loading train data for epoch 0
| loaded 1022506 examples from: /export/b02/wtan/data-bin/ps-total/train.ps-en.ps
| loaded 1022506 examples from: /export/b02/wtan/data-bin/ps-total/train.ps-en.en
| /export/b02/wtan/data-bin/ps-total train ps-en 1022506 examples
data sampling with temperature 1 is [1.]
| WARNING: 24423 samples have invalid sizes and will be skipped, max_positions=OrderedDict([('ps-en', (150, 150))]), first few sample ids=[5038, 5039, 5040, 5041, 5042, 5043, 5044, 5045, 5046, 5047]
Orignial data size=998083; filtered data size=798477
resetting at step 0
/home/wtan12/multiDDS/fairseq/models/fairseq_model.py:276: UserWarning: FairseqModel is deprecated, please use FairseqEncoderDecoderModel or BaseFairseqModel instead
  self.models = nn.ModuleDict({
| epoch 001:    100 / 2605 loss=13.376, nll_loss=13.325, ppl=10264.34, wps=4111, ups=0, wpb=7146.832, bsz=311.426, num_updates=101, lr=5.14748e-06, gnorm=1.594, clip=0.000, oom=0.000, wall=210, train_wall=166, ps-en:loss=13.3762, ps-en:nll_loss=13.3254, ps-en:ntokens=7146.83, ps-en:nsentences=311.426, ps-en:sample_size=7146.83
| epoch 001:    200 / 2605 loss=12.725, nll_loss=12.606, ppl=6233.21, wps=4095, ups=1, wpb=7177.458, bsz=309.871, num_updates=201, lr=1.0145e-05, gnorm=1.278, clip=0.000, oom=0.000, wall=387, train_wall=333, ps-en:loss=12.7253, ps-en:nll_loss=12.6058, ps-en:ntokens=7177.46, ps-en:nsentences=309.871, ps-en:sample_size=7177.46

About

Filter training data for neural machine translation model `on the fly` with reinforcement learning agent. Work based on previous research from Carnegie Mellon University (multi-DDS) and Johns Hopkins University (LASER score for data-sets from WMT-20)

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages