Skip to content

stewart-r/k-medoids

Repository files navigation

Build Status

k-medoids

An implementation of the k-medoid Partitioning Around Medoids (PAM) algorithm (wikipedia entry)

Example Usage

Simple Example (Uses Euclidean Distance Function by default)

TypeScript:

import { Cluster, Clusterer } from "k-medoids";

const k = 2;
const myData = [
    [1, 2],
    [1, 3],
    [-1, 2.5],
    [0, 0],
    [510, 203],
    [-100, 120],
];

const clusterer = Clusterer.getInstance(myData, 2);
const clusteredData = clusterer.getClusteredData();
clusteredData

JavaScript:

const kmeds = require("k-medoids");

const k = 2;
const myData = [
    [1, 2],
    [1, 3],
    [-1, 2.5],
    [0, 0],
    [510, 203],
    [-100, 120],
];

const clusterer = kmeds.Clusterer.getInstance(myData, 2);
const clusteredData = clusterer.getClusteredData();
clusteredData

outputs:

[
    [
        [510,203]
    ],
    [
        [1,2],[1,3],[-1,2.5],[0,0],[-100,120]
    ]
]

Using a Custom Distance Function

const myFunkyDistanceFn = (a: number[], b: number[]) => {
    return Math.abs(a[1] - b[1]);
};

const myClusterer = Clusterer.getInstance(myData, 2, myFunkyDistanceFn);
const data = myClusterer.getClusteredData();
data

outputs:

[
    [
        [510,203],
        [-100,120]
    ],
    [
        [1,2],
        [1,3],
        [-1,2.5],
        [0,0]
    ]
]

Clustering custom objects

We can cluster any object type as long as we provide a distance function to give the distance between them.

For example with a set of "widgets" like this:

const myWidgets = [
    {
        Name: "DoHickey",
        Weight: 10,
    },
    {
        Name: "Thingy",
        Weight: 10.5,
    },
    {
        Name: "Whatsit",
        Weight: 9.5,
    },
    {
        Name: "Bohemoth",
        Weight: 120,
    },
    {
        Name: "Goliath",
        Weight: 125,
    },
];

we might consider items to be similar by weight, and thus:

const myWidgetClusterer = Clusterer.getInstance(myWidgets, 2, (a, b) => {
    return Math.abs(a.Weight - b.Weight);
});
const groupedWidgets = myWidgetClusterer.getClusteredData();
groupedWidgets

gives us:

[
    [
        {"Name":"Bohemoth","Weight":120},
        {"Name":"Goliath","Weight":125}
    ],
    [
        {"Name":"DoHickey","Weight":10},
        {"Name":"Thingy","Weight":10.5},
        {"Name":"Whatsit","Weight":9.5}]
    ]
]

About

An implementation of the k-medoids algorithm

Resources

License

Stars

Watchers

Forks

Packages

No packages published