Skip to content

superbunny38/DeepLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning

About

[완독]

  • Introduction to Data Centric AI (MIT, 2022)

  • 밑바닥 부터 시작하는 딥러닝 1,2

  • CS231n (Stanford Univ.)

    • Introduction to Convolutional Neural Networks for Visual Recognition (22.09.21)
    • Image Classification (22.09.21)
    • Loss Functions and Optimization (22.09.22)
    • Introduction to Neural Networks (22.09.22)
    • Convolutional Neural Networks (22.09.23)
    • Training Neural Networks I (22.09.24)
    • Training Neural Networks II (22.09.25)
    • Deep Learning Software (22.11.11)
    • CNN Architectures (22.12.14)
    • Recurrent Neural Networks (23.02.06)
    • Segmentation & Detection
    • Generative Models (23.04.13)
  • Vector, Matrix, and Tensor Derivatives (Erik Learned-Miller, Stanford Univ.)

  • 파이토치 1x로 시작하는 딥러닝

  • Computer Vision (SKKU, Prof. Gaya Nadarajan Lecture Teaching Assistant (2022-Spring), Attended (2021-Fall))

  • Natural Language Processing (SKKU, Prof. Gaya Nadarajan Lecture Teaching Assistant (2022-Fall))

  • KAIST Idea Factory 딥러닝 홀로서기

    • Graph Convolutional Network
  • pytorch_advanced: 만들면서 배우는 파이토치 딥러닝

  • Supplementary Materials: Supplementary concepts essential to understand deep learning (noted by me)

  • papers: Self-reviewed, reproduced, or implemented papers

[Upcoming]

  • CS230 (2022-Winter)

[부분 참고]

  • 파이토치 첫걸음:딥러닝 기초부터 RNN 오토인코더 GAN 실전 기법까지
  • 펭귄브로의 3분 딥러닝 파이토치맛