Skip to content

FedAvg code with privacy protection function, the application of Paillier homomorphic encryption algorithm and differential privacy, differential privacy includes Laplacian mechanism differential privacy and Gaussian mechanism differential privacy.

Notifications You must be signed in to change notification settings

supertuz/fedavg_encrypt

 
 

Repository files navigation

1. 简介

本项目基于PyTorch 1.11.0和Python 3.9.7。它支持使用GPU,当然它可以在没有GPU的情况下运行(它需要对代码的GPU部分进行简单的修改)。超参数信息封装在utils的conf.json中,可以修改json文件直接调用。数据集目前采用MNIST数据集和CIFAR-10数据集,构建模型实现了基于灰白图片(单通道)和彩色图片(三通道)的FedAvg,项目代码简洁,注释清晰,如果我的项目对您有所帮助,麻烦点亮一颗小星星,这将是对我最大的鼓励与支持!

2. 使用方法

如果你只是想使用FedAvg,修改conf.json中的noise设置为0, 运行如下代码:

python server.py -c ./utils/conf.json

2.2 差分隐私

如果你想使用基于差分隐私的FedAvg,修改conf.json中的noise设置为1(拉普拉斯机制)或者2(高斯机制),sigma用来调节噪声幅度,运行如下代码:

python server.py -c ./utils/conf.json

2.3 DP+paillier

如果你想使用基于差分隐私和同态加密的FedAvg,修改conf.json中的noise设置为1(拉普拉斯机制)或者2(高斯机制),sigma用来调节噪声幅度,运行如下代码:

python server_encrypt.py -c ./utils/conf.json

3. 其他文件

new_paillier.py文件中的加密算法是用来加解密文本信息,test.py是用来测试Paillier的用法,可以忽略。

About

FedAvg code with privacy protection function, the application of Paillier homomorphic encryption algorithm and differential privacy, differential privacy includes Laplacian mechanism differential privacy and Gaussian mechanism differential privacy.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%