Skip to content

Ollama RAG based on PrivateGPT for document retrieval, integrating a vector database for efficient information retrieval. This project aims to enhance document search and retrieval processes, ensuring privacy and accuracy in data handling.

License

Notifications You must be signed in to change notification settings

surajtc/ollama-rag

Repository files navigation

Efficient Document Retrival using Ollama and PrivateGPT

This project aims to enhance document search and retrieval processes, ensuring privacy and accuracy in data handling.

Getting Started

Step 1: Setup a Virtual Env
Step 2: Install Dependencies using Pip
pip install -r requirements.txt
Step 3: Ensure Ollama and Mistral is installed
ollama pull mistral
Step 4: Create source_documents Folder and Add your Documents
mkdir source_documents

Supported file types:

  • .csv: CSV,
  • .docx: Word Document,
  • .doc: Word Document,
  • .enex: EverNote,
  • .eml: Email,
  • .epub: EPub,
  • .html: HTML File,
  • .md: Markdown,
  • .msg: Outlook Message,
  • .odt: Open Document Text,
  • .pdf: Portable Document Format (PDF),
  • .pptx : PowerPoint Document,
  • .ppt : PowerPoint Document,
  • .txt: Text file (UTF-8),
Step 5: Ingest Documents to Store in Vector Database for Query
python ingest.py
Step 6: Chat using PrivateGPT
python privateGPT.py

To use a different model try

ollama pull llama2:13b
MODEL=llama2:13b python privateGPT.py

About

Ollama RAG based on PrivateGPT for document retrieval, integrating a vector database for efficient information retrieval. This project aims to enhance document search and retrieval processes, ensuring privacy and accuracy in data handling.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages