-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Replace CLINT with preliminary ACLINT support
Based on the implementation of CLINT, a preliminary ACLINT is implemented, including the basic logic for operating `mtimer`, `mswi`, and `sswi`. CLINT was replaced with ACLINT, and the old CLINT implementation was removed entirely. Currently, due to the lack of implementation, the introduced ACLINT uses only supervisor-level IPI. Therefore, although the logic for mswi is implemented, it is not being used at the moment. The implementation can be tested by `make check SMP=n`, where n is the number of harts you want to simulate.
- Loading branch information
Showing
7 changed files
with
355 additions
and
143 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -53,7 +53,7 @@ OBJS := \ | |
plic.o \ | ||
uart.o \ | ||
main.o \ | ||
clint.o \ | ||
aclint.o \ | ||
$(OBJS_EXTRA) | ||
|
||
deps := $(OBJS:%.o=.%.o.d) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
#include <stdint.h> | ||
#include "device.h" | ||
#include "riscv.h" | ||
#include "riscv_private.h" | ||
|
||
/* ACLINT MTIMER */ | ||
void aclint_mtimer_update_interrupts(hart_t *hart, mtimer_state_t *mtimer) | ||
{ | ||
if (semu_timer_get(&mtimer->mtime) >= mtimer->mtimecmp[hart->mhartid]) | ||
hart->sip |= RV_INT_STI_BIT; // Set Supervisor Timer Interrupt | ||
else | ||
hart->sip &= ~RV_INT_STI_BIT; // Clear Supervisor Timer Interrupt | ||
} | ||
|
||
static bool aclint_mtimer_reg_read(mtimer_state_t *mtimer, | ||
uint32_t addr, | ||
uint32_t *value) | ||
{ | ||
/** | ||
* @brief `addr & 0x4` is used to determine the upper or lower 32 bits | ||
* of the mtimecmp register. If `addr & 0x4` is 0, then the lower 32 | ||
* bits are accessed. | ||
* | ||
* `addr >> 3` is used to get the index of the mtimecmp array. In | ||
* "ACLINT MTIMER Compare Register Map", each mtimecmp register is 8 | ||
* bytes long. So, we need to divide the address by 8 to get the index. | ||
* | ||
*/ | ||
|
||
/* mtimecmp (0x4300000 ~ 0x4307FF8) */ | ||
if (addr < 0x7FF8) { | ||
*value = | ||
(uint32_t) (mtimer->mtimecmp[addr >> 3] >> (addr & 0x4 ? 32 : 0)); | ||
return true; | ||
} | ||
|
||
/* mtime (0x4307FF8 ~ 0x4308000) */ | ||
if (addr < 0x8000) { | ||
*value = (uint32_t) (semu_timer_get(&mtimer->mtime) >> | ||
(addr & 0x4 ? 32 : 0)); | ||
return true; | ||
} | ||
return false; | ||
} | ||
|
||
static bool aclint_mtimer_reg_write(mtimer_state_t *mtimer, | ||
uint32_t addr, | ||
uint32_t value) | ||
{ | ||
/** | ||
* @brief The `cmp_val & 0xFFFFFFFF` is used to select the upper 32 bits | ||
* of mtimer->mtimecmp[addr >> 3], then shift the value to the left by | ||
* 32 bits to set the upper 32 bits. | ||
* | ||
*/ | ||
|
||
/* mtimecmp (0x4300000 ~ 0x4307FF8) */ | ||
if (addr < 0x7FF8) { | ||
uint64_t cmp_val = mtimer->mtimecmp[addr >> 3]; | ||
|
||
if (addr & 0x4) | ||
cmp_val = (cmp_val & 0xFFFFFFFF) | ((uint64_t) value << 32); | ||
else | ||
cmp_val = (cmp_val & 0xFFFFFFFF00000000ULL) | value; | ||
|
||
mtimer->mtimecmp[addr >> 3] = cmp_val; | ||
return true; | ||
} | ||
|
||
/* mtime (0x4307FF8 ~ 0x4308000) */ | ||
if (addr < 0x8000) { | ||
uint64_t mtime_val = mtimer->mtime.begin; | ||
if (addr & 0x4) | ||
mtime_val = (mtime_val & 0xFFFFFFFF) | ((uint64_t) value << 32); | ||
else | ||
mtime_val = (mtime_val & 0xFFFFFFFF00000000ULL) | value; | ||
|
||
semu_timer_rebase(&mtimer->mtime, mtime_val); | ||
return true; | ||
} | ||
|
||
return false; | ||
} | ||
|
||
void aclint_mtimer_read(hart_t *hart, | ||
mtimer_state_t *mtimer, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t *value) | ||
{ | ||
if (!aclint_mtimer_reg_read(mtimer, addr, value)) | ||
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val); | ||
|
||
*value >>= (RV_MEM_SW - width); | ||
} | ||
|
||
void aclint_mtimer_write(hart_t *hart, | ||
mtimer_state_t *mtimer, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t value) | ||
{ | ||
if (!aclint_mtimer_reg_write(mtimer, addr, value << (RV_MEM_SW - width))) | ||
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val); | ||
} | ||
|
||
/* ACLINT MSWI */ | ||
void aclint_mswi_update_interrupts(hart_t *hart, mswi_state_t *mswi) | ||
{ | ||
if (mswi->msip[hart->mhartid]) | ||
hart->sip |= RV_INT_SSI_BIT; // Set Machine Software Interrupt | ||
else | ||
hart->sip &= ~RV_INT_SSI_BIT; // Clear Machine Software Interrupt | ||
} | ||
|
||
static bool aclint_mswi_reg_read(mswi_state_t *mswi, | ||
uint32_t addr, | ||
uint32_t *value) | ||
{ | ||
/** | ||
* @brief `msip` is an array where each entry corresponds to a Hart, | ||
* each entry is 4 bytes (32 bits). So, we need to divide the address | ||
* by 4 to get the index. | ||
*/ | ||
|
||
/* Address range for msip: 0x4400000 ~ 0x4404000 */ | ||
if (addr < 0x4000) { | ||
*value = mswi->msip[addr >> 2]; | ||
return true; | ||
} | ||
return false; | ||
} | ||
|
||
static bool aclint_mswi_reg_write(mswi_state_t *mswi, | ||
uint32_t addr, | ||
uint32_t value) | ||
{ | ||
if (addr < 0x4000) { | ||
mswi->msip[addr >> 2] = value & 0x1; // Only the LSB is valid | ||
return true; | ||
} | ||
return false; | ||
} | ||
|
||
void aclint_mswi_read(hart_t *hart, | ||
mswi_state_t *mswi, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t *value) | ||
{ | ||
if (!aclint_mswi_reg_read(mswi, addr, value)) | ||
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val); | ||
|
||
*value >>= (RV_MEM_SW - width); | ||
} | ||
|
||
void aclint_mswi_write(hart_t *hart, | ||
mswi_state_t *mswi, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t value) | ||
{ | ||
if (!aclint_mswi_reg_write(mswi, addr, value << (RV_MEM_SW - width))) | ||
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val); | ||
} | ||
|
||
/* ACLINT SSWI */ | ||
void aclint_sswi_update_interrupts(hart_t *hart, sswi_state_t *sswi) | ||
{ | ||
if (sswi->ssip[hart->mhartid]) | ||
hart->sip |= RV_INT_SSI_BIT; // Set Supervisor Software Interrupt | ||
else | ||
hart->sip &= ~RV_INT_SSI_BIT; // Clear Supervisor Software Interrupt | ||
} | ||
|
||
static bool aclint_sswi_reg_read(__attribute__((unused)) sswi_state_t *sswi, | ||
uint32_t addr, | ||
uint32_t *value) | ||
{ | ||
/* Address range for ssip: 0x4500000 ~ 0x4504000 */ | ||
if (addr < 0x4000) { | ||
*value = 0; // Upper 31 bits are zero, and LSB reads as 0 | ||
return true; | ||
} | ||
return false; | ||
} | ||
|
||
static bool aclint_sswi_reg_write(sswi_state_t *sswi, | ||
uint32_t addr, | ||
uint32_t value) | ||
{ | ||
if (addr < 0x4000) { | ||
sswi->ssip[addr >> 2] = value & 0x1; // Only the LSB is valid | ||
|
||
return true; | ||
} | ||
return false; | ||
} | ||
|
||
void aclint_sswi_read(hart_t *hart, | ||
sswi_state_t *sswi, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t *value) | ||
{ | ||
if (!aclint_sswi_reg_read(sswi, addr, value)) | ||
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val); | ||
|
||
*value >>= (RV_MEM_SW - width); | ||
} | ||
|
||
void aclint_sswi_write(hart_t *hart, | ||
sswi_state_t *sswi, | ||
uint32_t addr, | ||
uint8_t width, | ||
uint32_t value) | ||
{ | ||
if (!aclint_sswi_reg_write(sswi, addr, value << (RV_MEM_SW - width))) | ||
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val); | ||
} |
Oops, something went wrong.