Skip to content

t-thanh/deeptam

 
 

Repository files navigation

DeepTAM

DeepTAM is a learnt system for keyframe-based dense camera tracking and mapping.

If you use this code for research, please cite the following paper:

@InProceedings{ZUB18,
    author       = "H. Zhou and B. Ummenhofer and T. Brox",
    title        = "DeepTAM: Deep Tracking and Mapping",
    booktitle    = "European Conference on Computer Vision (ECCV)",
    month        = " ",
    year         = "2018",
    url          = "http://lmb.informatik.uni-freiburg.de/Publications/2018/ZUB18"
}

See the project page for the paper and other material.

Note: Currently we only provide deployment code.

Setup

Current version is tested on Ubuntu 16.04 and with Python3.

# install virtualenv manager (here we use pew)
pip3 install pew

# create virtualenv
pew new deeptam

# switch to virtualenv
pew in deeptam
# install tensorflow 1.4.0 with gpu
pip3 install tensorflow-gpu==1.4.0

# install some python modules
pip3 install minieigen
pip3 install scikit-image
# clone and build lmbspecialops (use branch deeptam)
git clone -b deeptam https://github.com/lmb-freiburg/lmbspecialops.git
LMBSPECIALOPS_DIR=$PWD/lmbspecialops
cd $LMBSPECIALOPS_DIR
mkdir build
cd build
cmake ..
make

# add lmbspecialops to your PYTHON_PATH
pew add $LMBSPECIALOPS_DIR/python
# clone deeptam git (currently only tracking code is available)
git clone https://github.com/lmb-freiburg/deeptam.git
DEEPTAM_DIR=$PWD/deeptam

# add deeptam_tracker to your PYTHON_PATH
pew add $DEEPTAM_DIR/tracking/python

# add deeptam_mapper to your PYTHON_PATH
pew add $DEEPTAM_DIR/mapping/python

Running tracking examples

# download example data
cd  $DEEPTAM_DIR/tracking/data
./download_testdata.sh

# download weights
cd $DEEPTAM_DIR/tracking/weights
./download_weights.sh

The basic example shows how to use DeepTAM to track the camera within one keyframe:

# run a basic example
cd $DEEPTAM_DIR/tracking/examples
python3 example_basic.py

The advanced example shows how to track a video sequence with multiple keyframes:

# run an advanced example
cd $DEEPTAM_DIR/tracking/examples
python3 example_advanced_sequence.py

# or run without visualization for speedup
python3 example_advanced_sequence.py --disable_vis

Running mapping examples

# download weights
cd $DEEPTAM_DIR/mapping/weights
./download_weights.sh

# run the example
cd $DEEPTAM_DIR/mapping/examples
python3 mapping_test_deeptam.py

License

deeptam is under the GNU General Public License v3.0

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.1%
  • Dockerfile 1.1%
  • Other 0.8%