Build docker image
bash .dev_scripts/build.sh
Set env variables
export DATA_DIR="/path/to/data"
export CODE_DIR="/path/to/this/repo"
Start a docker container
bash .dev_scripts/start.sh all
python tools/prepare_data.py
python tools/drop_dupliates.py
Follow mmdet tutorial to prepare coco dataset.
Directory structure should be as follows.
├── data
│ ├── coco
│ ├── dtrain0i.json
│ ├── dtrain1i.json
│ ├── dtrain_dataset2.json
│ ├── dtrain_dataset2_dropdup.json
│ ├── dtrainval.json
│ ├── dval0i.json
│ ├── dval1i.json
│ ├── polygons.jsonl
│ ├── sample_submission.csv
│ ├── test
│ ├── tile_meta.csv
│ ├── train
│ └── wsi_meta.csv
└── kaggle-hubmap-hacking-the-human-vasculature
├── LICENSE
├── README.md
├── configs
├── custom_modules
├── docker
├── test.py
├── tools
├── train.py
└── work_dirs
python train.py configs/r0.py --amp
python train.py configs/y0.py --amp
python train.py configs/m0.py --amp
python train.py configs/coco/sb.py --amp
python train.py configs/sb0.py --amp
python train.py configs/coco/s.py --amp
python train.py configs/s0.py --amp
Check training log for best iteration and use tools/dump_ckpt.py
to extract the best checkpoint.
Inference and ensemble could be found here.