-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Rollup merge of #94667 - frank-king:feature/iter_map_windows, r=Mark-…
…Simulacrum Add `Iterator::map_windows` Tracking issue: #87155. This is inherited from the old PR #82413. Unlike #82413, this PR implements the `MapWindows` to be lazy: only when pulling from the outer iterator, `.next()` of the inner iterator will be called. ## Implementaion Steps - [x] Implement `MapWindows` to keep the iterators' [*Laziness*](https://doc.rust-lang.org/std/iter/index.html#laziness) contract. - [x] Fix the known bug of memory access error. - [ ] Full specialization of iterator-related traits for `MapWindows`. - [x] `Iterator::size_hint`, - [x] ~`Iterator::count`~, - [x] `ExactSizeIterator` (when `I: ExactSizeIterator`), - [x] ~`TrustedLen` (when `I: TrustedLen`)~, - [x] `FusedIterator`, - [x] ~`Iterator::advance_by`~, - [x] ~`Iterator::nth`~, - [ ] ... - [ ] More tests and docs. ## Unresolved Questions: - [ ] Is there any more iterator-related traits should be specialized? - [ ] Is the double-space buffer worth? - [ ] Should there be `rmap_windows` or something else? - [ ] Taking GAT for consideration, should the mapper function be `FnMut(&[I::Item; N]) -> R` or something like `FnMut(ArrayView<'_, I::Item, N>) -> R`? Where `ArrayView` is mentioned in rust-lang/generic-associated-types-initiative#2. - It can save memory, only the same size as the array window is needed, - It is more efficient, which requires less data copies, - It is possibly compatible with the GATified version of `LendingIterator::windows`. - But it prevents the array pattern matching like `iter.map_windows(|_arr: [_; N]| ())`, unless we extend the array pattern to allow matching the `ArrayView`.
- Loading branch information
Showing
7 changed files
with
743 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,293 @@ | ||
use crate::{ | ||
fmt, | ||
iter::{ExactSizeIterator, FusedIterator}, | ||
mem::{self, MaybeUninit}, | ||
ptr, | ||
}; | ||
|
||
/// An iterator over the mapped windows of another iterator. | ||
/// | ||
/// This `struct` is created by the [`Iterator::map_windows`]. See its | ||
/// documentation for more information. | ||
#[must_use = "iterators are lazy and do nothing unless consumed"] | ||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
pub struct MapWindows<I: Iterator, F, const N: usize> { | ||
f: F, | ||
inner: MapWindowsInner<I, N>, | ||
} | ||
|
||
struct MapWindowsInner<I: Iterator, const N: usize> { | ||
// We fuse the inner iterator because there shouldn't be "holes" in | ||
// the sliding window. Once the iterator returns a `None`, we make | ||
// our `MapWindows` iterator return `None` forever. | ||
iter: Option<I>, | ||
// Since iterators are assumed lazy, i.e. it only yields an item when | ||
// `Iterator::next()` is called, and `MapWindows` is not an exception. | ||
// | ||
// Before the first iteration, we keep the buffer `None`. When the user | ||
// first call `next` or other methods that makes the iterator advance, | ||
// we collect the first `N` items yielded from the inner iterator and | ||
// put it into the buffer. | ||
// | ||
// When the inner iterator has returned a `None` (i.e. fused), we take | ||
// away this `buffer` and leave it `None` to reclaim its resources. | ||
// | ||
// FIXME: should we shrink the size of `buffer` using niche optimization? | ||
buffer: Option<Buffer<I::Item, N>>, | ||
} | ||
|
||
// `Buffer` uses two times of space to reduce moves among the iterations. | ||
// `Buffer<T, N>` is semantically `[MaybeUninit<T>; 2 * N]`. However, due | ||
// to limitations of const generics, we use this different type. Note that | ||
// it has the same underlying memory layout. | ||
struct Buffer<T, const N: usize> { | ||
// Invariant: `self.buffer[self.start..self.start + N]` is initialized, | ||
// with all other elements being uninitialized. This also | ||
// implies that `self.start <= N`. | ||
buffer: [[MaybeUninit<T>; N]; 2], | ||
start: usize, | ||
} | ||
|
||
impl<I: Iterator, F, const N: usize> MapWindows<I, F, N> { | ||
pub(in crate::iter) fn new(iter: I, f: F) -> Self { | ||
assert!(N != 0, "array in `Iterator::map_windows` must contain more than 0 elements"); | ||
|
||
// Only ZST arrays' length can be so large. | ||
if mem::size_of::<I::Item>() == 0 { | ||
assert!( | ||
N.checked_mul(2).is_some(), | ||
"array size of `Iterator::map_windows` is too large" | ||
); | ||
} | ||
|
||
Self { inner: MapWindowsInner::new(iter), f } | ||
} | ||
} | ||
|
||
impl<I: Iterator, const N: usize> MapWindowsInner<I, N> { | ||
#[inline] | ||
fn new(iter: I) -> Self { | ||
Self { iter: Some(iter), buffer: None } | ||
} | ||
|
||
fn next_window(&mut self) -> Option<&[I::Item; N]> { | ||
let iter = self.iter.as_mut()?; | ||
match self.buffer { | ||
// It is the first time to advance. We collect | ||
// the first `N` items from `self.iter` to initialize `self.buffer`. | ||
None => self.buffer = Buffer::try_from_iter(iter), | ||
Some(ref mut buffer) => match iter.next() { | ||
None => { | ||
// Fuse the inner iterator since it yields a `None`. | ||
self.iter.take(); | ||
self.buffer.take(); | ||
} | ||
// Advance the iterator. We first call `next` before changing our buffer | ||
// at all. This means that if `next` panics, our invariant is upheld and | ||
// our `Drop` impl drops the correct elements. | ||
Some(item) => buffer.push(item), | ||
}, | ||
} | ||
self.buffer.as_ref().map(Buffer::as_array_ref) | ||
} | ||
|
||
fn size_hint(&self) -> (usize, Option<usize>) { | ||
let Some(ref iter) = self.iter else { return (0, Some(0)) }; | ||
let (lo, hi) = iter.size_hint(); | ||
if self.buffer.is_some() { | ||
// If the first `N` items are already yielded by the inner iterator, | ||
// the size hint is then equal to the that of the inner iterator's. | ||
(lo, hi) | ||
} else { | ||
// If the first `N` items are not yet yielded by the inner iterator, | ||
// the first `N` elements should be counted as one window, so both bounds | ||
// should subtract `N - 1`. | ||
(lo.saturating_sub(N - 1), hi.map(|hi| hi.saturating_sub(N - 1))) | ||
} | ||
} | ||
} | ||
|
||
impl<T, const N: usize> Buffer<T, N> { | ||
fn try_from_iter(iter: &mut impl Iterator<Item = T>) -> Option<Self> { | ||
let first_half = crate::array::iter_next_chunk(iter).ok()?; | ||
let buffer = [MaybeUninit::new(first_half).transpose(), MaybeUninit::uninit_array()]; | ||
Some(Self { buffer, start: 0 }) | ||
} | ||
|
||
#[inline] | ||
fn buffer_ptr(&self) -> *const MaybeUninit<T> { | ||
self.buffer.as_ptr().cast() | ||
} | ||
|
||
#[inline] | ||
fn buffer_mut_ptr(&mut self) -> *mut MaybeUninit<T> { | ||
self.buffer.as_mut_ptr().cast() | ||
} | ||
|
||
#[inline] | ||
fn as_array_ref(&self) -> &[T; N] { | ||
debug_assert!(self.start + N <= 2 * N); | ||
|
||
// SAFETY: our invariant guarantees these elements are initialized. | ||
unsafe { &*self.buffer_ptr().add(self.start).cast() } | ||
} | ||
|
||
#[inline] | ||
fn as_uninit_array_mut(&mut self) -> &mut MaybeUninit<[T; N]> { | ||
debug_assert!(self.start + N <= 2 * N); | ||
|
||
// SAFETY: our invariant guarantees these elements are in bounds. | ||
unsafe { &mut *self.buffer_mut_ptr().add(self.start).cast() } | ||
} | ||
|
||
/// Pushes a new item `next` to the back, and pops the front-most one. | ||
/// | ||
/// All the elements will be shifted to the front end when pushing reaches | ||
/// the back end. | ||
fn push(&mut self, next: T) { | ||
let buffer_mut_ptr = self.buffer_mut_ptr(); | ||
debug_assert!(self.start + N <= 2 * N); | ||
|
||
let to_drop = if self.start == N { | ||
// We have reached the end of our buffer and have to copy | ||
// everything to the start. Example layout for N = 3. | ||
// | ||
// 0 1 2 3 4 5 0 1 2 3 4 5 | ||
// ┌───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┐ | ||
// │ - │ - │ - │ a │ b │ c │ -> │ b │ c │ n │ - │ - │ - │ | ||
// └───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┘ | ||
// ↑ ↑ | ||
// start start | ||
|
||
// SAFETY: the two pointers are valid for reads/writes of N -1 | ||
// elements because our array's size is semantically 2 * N. The | ||
// regions also don't overlap for the same reason. | ||
// | ||
// We leave the old elements in place. As soon as `start` is set | ||
// to 0, we treat them as uninitialized and treat their copies | ||
// as initialized. | ||
let to_drop = unsafe { | ||
ptr::copy_nonoverlapping(buffer_mut_ptr.add(self.start + 1), buffer_mut_ptr, N - 1); | ||
(*buffer_mut_ptr.add(N - 1)).write(next); | ||
buffer_mut_ptr.add(self.start) | ||
}; | ||
self.start = 0; | ||
to_drop | ||
} else { | ||
// SAFETY: `self.start` is < N as guaranteed by the invariant | ||
// plus the check above. Even if the drop at the end panics, | ||
// the invariant is upheld. | ||
// | ||
// Example layout for N = 3: | ||
// | ||
// 0 1 2 3 4 5 0 1 2 3 4 5 | ||
// ┌───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┐ | ||
// │ - │ a │ b │ c │ - │ - │ -> │ - │ - │ b │ c │ n │ - │ | ||
// └───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┘ | ||
// ↑ ↑ | ||
// start start | ||
// | ||
let to_drop = unsafe { | ||
(*buffer_mut_ptr.add(self.start + N)).write(next); | ||
buffer_mut_ptr.add(self.start) | ||
}; | ||
self.start += 1; | ||
to_drop | ||
}; | ||
|
||
// SAFETY: the index is valid and this is element `a` in the | ||
// diagram above and has not been dropped yet. | ||
unsafe { ptr::drop_in_place(to_drop.cast::<T>()) }; | ||
} | ||
} | ||
|
||
impl<T: Clone, const N: usize> Clone for Buffer<T, N> { | ||
fn clone(&self) -> Self { | ||
let mut buffer = Buffer { | ||
buffer: [MaybeUninit::uninit_array(), MaybeUninit::uninit_array()], | ||
start: self.start, | ||
}; | ||
buffer.as_uninit_array_mut().write(self.as_array_ref().clone()); | ||
buffer | ||
} | ||
} | ||
|
||
impl<I, const N: usize> Clone for MapWindowsInner<I, N> | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone, | ||
{ | ||
fn clone(&self) -> Self { | ||
Self { iter: self.iter.clone(), buffer: self.buffer.clone() } | ||
} | ||
} | ||
|
||
impl<T, const N: usize> Drop for Buffer<T, N> { | ||
fn drop(&mut self) { | ||
// SAFETY: our invariant guarantees that N elements starting from | ||
// `self.start` are initialized. We drop them here. | ||
unsafe { | ||
let initialized_part: *mut [T] = crate::ptr::slice_from_raw_parts_mut( | ||
self.buffer_mut_ptr().add(self.start).cast(), | ||
N, | ||
); | ||
ptr::drop_in_place(initialized_part); | ||
} | ||
} | ||
} | ||
|
||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
impl<I, F, R, const N: usize> Iterator for MapWindows<I, F, N> | ||
where | ||
I: Iterator, | ||
F: FnMut(&[I::Item; N]) -> R, | ||
{ | ||
type Item = R; | ||
|
||
fn next(&mut self) -> Option<Self::Item> { | ||
let window = self.inner.next_window()?; | ||
let out = (self.f)(window); | ||
Some(out) | ||
} | ||
|
||
fn size_hint(&self) -> (usize, Option<usize>) { | ||
self.inner.size_hint() | ||
} | ||
} | ||
|
||
// Note that even if the inner iterator not fused, the `MapWindows` is still fused, | ||
// because we don't allow "holes" in the mapping window. | ||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
impl<I, F, R, const N: usize> FusedIterator for MapWindows<I, F, N> | ||
where | ||
I: Iterator, | ||
F: FnMut(&[I::Item; N]) -> R, | ||
{ | ||
} | ||
|
||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
impl<I, F, R, const N: usize> ExactSizeIterator for MapWindows<I, F, N> | ||
where | ||
I: ExactSizeIterator, | ||
F: FnMut(&[I::Item; N]) -> R, | ||
{ | ||
} | ||
|
||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
impl<I: Iterator + fmt::Debug, F, const N: usize> fmt::Debug for MapWindows<I, F, N> { | ||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | ||
f.debug_struct("MapWindows").field("iter", &self.inner.iter).finish() | ||
} | ||
} | ||
|
||
#[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")] | ||
impl<I, F, const N: usize> Clone for MapWindows<I, F, N> | ||
where | ||
I: Iterator + Clone, | ||
F: Clone, | ||
I::Item: Clone, | ||
{ | ||
fn clone(&self) -> Self { | ||
Self { f: self.f.clone(), inner: self.inner.clone() } | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.