DIP is deep learning based integrated perception framework for social service robots
It contains state-of-the-art object detector, human pose estimator, human re-identification, object captioning modules.
It can not only detect dozens of everyday life objects but also provide useful tags such as pose, identity, gender, cloth color, specific instance of objects, ETC..
We won the 1st place in RoboCup2017@Home Social Standard Platform League using this framework.
-
Object detector : https://github.com/thtrieu/darkflow
-
Pose estimator : https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
-
Person re-identification : https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID
-
Captioning : https://github.com/jcjohnson/densecap
Server : ROS Indigo, Ubuntu 14.04, Python 2.7, GPU with 8Gb memory or higher
Robot : Kinect sensor (or Asus axtion)
Install below from their websites.
- Tensorflow r1.1 or higher
- Darkflow (https://github.com/thtrieu/darkflow) (intall option 3)
Install below as follows.
-
Torch from http://torch.ch/docs/getting-started.html (choose 'yes' when installer asks something about path)
-
Others
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
pip install Cython
sudo apt-get install libhdf5-dev libblas-dev liblapack-dev gfortran
pip install h5py
pip install keras
luarocks install nn
luarocks install image
luarocks install lua-cjson
luarocks install https://raw.githubusercontent.com/qassemoquab/stnbhwd/master/stnbhwd-scm-1.rockspec
luarocks install https://raw.githubusercontent.com/jcjohnson/torch-rnn/master/torch-rnn-scm-1.rockspec
luarocks install cutorch
luarocks install cunn
luarocks install cudnn
luarocks install md5
luarocks install --server=http://luarocks.org/dev torch-ros
pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
pip install torchvision
- Download pre-trained weight files
- Object detector :
- download
https://pjreddie.com/media/files/yolo.weights
- put it in
src/object_model
- download
- Pose estimation :
- download
http://posefs1.perception.cs.cmu.edu/Users/ZheCao/pose_iter_440000.caffemodel
- put it in
src/pose_model/model/_trained_COCO/
- download
http://posefs1.perception.cs.cmu.edu/Users/ZheCao/pose_iter_146000.caffemodel
- put it in
src/pose_model/model/_trained_MPI/
- download
https://www.dropbox.com/s/ae071mfm2qoyc8v/pose_model.pth?dl=0
- put it in
src/pose_model/
- download
- Re-identification : no need to download (included)
- captioning :
- download
http://cs.stanford.edu/people/jcjohns/densecap/densecap-pretrained-vgg16.t7.zip
- unzip it
- put unzipped file in
src/captioning_model/data/models/densecap/
- download
-
compile the catkin package.
-
Modify src/DIP_config.txt
show_integrated_perception : True or False (if True, DIP will visualize its perception)
perception_topic : DIP/perception (topic for integrated perception output)
rgb_topic : pepper_robot/camera/front/image_raw (topic for your sensor's RGB image)
depth_topic : pepper_robot/camera/depth/image_raw (topic for your sensor's Depth image)
obj_topic : DIP/objects (topic for object detection results)
use_loc : True (if True, DIP will calculate the locations of objects wrt robot/map/odometry and tag them automatically)
show_od : False (if True, DIP will visualize its object detection results)
reid_target_topic : DIP/reid_targets (topic for reid targets. send object_array to assign targets)
reid_topic : DIP/people_identified (topic for re-identification results)
reid_thr : 0.75 (threshold for re-identification)
pose_topic : DIP/people_w_pose (topic for pose estimation results)
captioning_topic : DIP/objects_w_caption (topic for object captioning results)
captioning_request_topic : DIP/captioning_request (topic for scene description request)
captioning_response_topic : DIP/captioning_response (topic for scene description responses)
captioning_keywords_topic : DIP/captioning_keywords (topic for keywords that will be extracted from captions)
- roslaunch dip_jychoi DIP_jychoi.launch
We use custom message for individual object and array of objects
see msgs/objs.msg , msgs/objs_array.msg
We also use string_array custom message to send keywords to captioning module.