Skip to content
This repository has been archived by the owner on Nov 24, 2022. It is now read-only.

A snapshot of teloxide repository before we've rewritten the history in order to delete big files.

License

Notifications You must be signed in to change notification settings

teloxide/teloxide-snapshot-2022-11-01

 
 

Repository files navigation

Warning

This repository is a snapshot of teloxide/teloxide repository, made just before a rebase. We've made the rebase to remove big files from the history, to make the repository smaller and faster to clone. This snapshot is left for historical purposes and to make old commit links work.

To file issues, make PRs, or view current developments, go to the teloxide/teloxide repository.

v0.11 -> v0.11.1 migration guide >>

teloxide

A full-featured framework that empowers you to easily build Telegram bots using Rust. It handles all the difficult stuff so you can focus only on your business logic.

Highlights

  • Declarative design. teloxide is based upon dptree, a functional chain of responsibility pattern that allows you to express pipelines of message processing in a highly declarative and extensible style.
  • Feature-rich. You can use both long polling and webhooks, configure an underlying HTTPS client, set a custom URL of a Telegram API server, do graceful shutdown, and much more.

  • Simple dialogues. Our dialogues subsystem is simple and easy-to-use, and, furthermore, is agnostic of how/where dialogues are stored. For example, you can just replace a one line to achieve persistence. Out-of-the-box storages include Redis, RocksDB and Sqlite.

  • Strongly typed commands. Define bot commands as an enum and teloxide will parse them automatically — just like JSON structures in serde-json and command-line arguments in structopt.

Setting up your environment

  1. Download Rust.
  2. Create a new bot using @Botfather to get a token in the format 123456789:blablabla.
  3. Initialise the TELOXIDE_TOKEN environmental variable to your token:
# Unix-like
$ export TELOXIDE_TOKEN=<Your token here>

# Windows command line
$ set TELOXIDE_TOKEN=<Your token here>

# Windows PowerShell
$ $env:TELOXIDE_TOKEN=<Your token here>
  1. Make sure that your Rust compiler is up to date (teloxide currently requires rustc at least version 1.64):
# If you're using stable
$ rustup update stable
$ rustup override set stable

# If you're using nightly
$ rustup update nightly
$ rustup override set nightly
  1. Run cargo new my_bot, enter the directory and put these lines into your Cargo.toml:
[dependencies]
teloxide = { version = "0.11", features = ["macros"] }
log = "0.4"
pretty_env_logger = "0.4"
tokio = { version =  "1.8", features = ["rt-multi-thread", "macros"] }

API overview

The dices bot

This bot replies with a die throw to each received message:

[examples/throw_dice.rs]

use teloxide::prelude::*;

#[tokio::main]
async fn main() {
    pretty_env_logger::init();
    log::info!("Starting throw dice bot...");

    let bot = Bot::from_env();

    teloxide::repl(bot, |bot: Bot, msg: Message| async move {
        bot.send_dice(msg.chat.id).await?;
        Ok(())
    })
    .await;
}

Commands

Commands are strongly typed and defined declaratively, similar to how we define CLI using structopt and JSON structures in serde-json. The following bot accepts these commands:

  • /username <your username>
  • /usernameandage <your username> <your age>
  • /help

[examples/command.rs]

use teloxide::{prelude::*, utils::command::BotCommands};

#[tokio::main]
async fn main() {
    pretty_env_logger::init();
    log::info!("Starting command bot...");

    let bot = Bot::from_env();

    Command::repl(bot, answer).await;
}

#[derive(BotCommands, Clone)]
#[command(rename_rule = "lowercase", description = "These commands are supported:")]
enum Command {
    #[command(description = "display this text.")]
    Help,
    #[command(description = "handle a username.")]
    Username(String),
    #[command(description = "handle a username and an age.", parse_with = "split")]
    UsernameAndAge { username: String, age: u8 },
}

async fn answer(bot: Bot, msg: Message, cmd: Command) -> ResponseResult<()> {
    match cmd {
        Command::Help => bot.send_message(msg.chat.id, Command::descriptions().to_string()).await?,
        Command::Username(username) => {
            bot.send_message(msg.chat.id, format!("Your username is @{username}.")).await?
        }
        Command::UsernameAndAge { username, age } => {
            bot.send_message(msg.chat.id, format!("Your username is @{username} and age is {age}."))
                .await?
        }
    };

    Ok(())
}

Dialogues management

A dialogue is typically described by an enumeration where each variant is one possible state of the dialogue. There are also state handler functions, which may turn a dialogue from one state to another, thereby forming an FSM.

Below is a bot that asks you three questions and then sends the answers back to you:

[examples/dialogue.rs]

use teloxide::{dispatching::dialogue::InMemStorage, prelude::*};

type MyDialogue = Dialogue<State, InMemStorage<State>>;
type HandlerResult = Result<(), Box<dyn std::error::Error + Send + Sync>>;

#[derive(Clone, Default)]
pub enum State {
    #[default]
    Start,
    ReceiveFullName,
    ReceiveAge {
        full_name: String,
    },
    ReceiveLocation {
        full_name: String,
        age: u8,
    },
}

#[tokio::main]
async fn main() {
    pretty_env_logger::init();
    log::info!("Starting dialogue bot...");

    let bot = Bot::from_env();

    Dispatcher::builder(
        bot,
        Update::filter_message()
            .enter_dialogue::<Message, InMemStorage<State>, State>()
            .branch(dptree::case![State::Start].endpoint(start))
            .branch(dptree::case![State::ReceiveFullName].endpoint(receive_full_name))
            .branch(dptree::case![State::ReceiveAge { full_name }].endpoint(receive_age))
            .branch(
                dptree::case![State::ReceiveLocation { full_name, age }].endpoint(receive_location),
            ),
    )
    .dependencies(dptree::deps![InMemStorage::<State>::new()])
    .enable_ctrlc_handler()
    .build()
    .dispatch()
    .await;
}

async fn start(bot: Bot, dialogue: MyDialogue, msg: Message) -> HandlerResult {
    bot.send_message(msg.chat.id, "Let's start! What's your full name?").await?;
    dialogue.update(State::ReceiveFullName).await?;
    Ok(())
}

async fn receive_full_name(bot: Bot, dialogue: MyDialogue, msg: Message) -> HandlerResult {
    match msg.text() {
        Some(text) => {
            bot.send_message(msg.chat.id, "How old are you?").await?;
            dialogue.update(State::ReceiveAge { full_name: text.into() }).await?;
        }
        None => {
            bot.send_message(msg.chat.id, "Send me plain text.").await?;
        }
    }

    Ok(())
}

async fn receive_age(
    bot: Bot,
    dialogue: MyDialogue,
    full_name: String, // Available from `State::ReceiveAge`.
    msg: Message,
) -> HandlerResult {
    match msg.text().map(|text| text.parse::<u8>()) {
        Some(Ok(age)) => {
            bot.send_message(msg.chat.id, "What's your location?").await?;
            dialogue.update(State::ReceiveLocation { full_name, age }).await?;
        }
        _ => {
            bot.send_message(msg.chat.id, "Send me a number.").await?;
        }
    }

    Ok(())
}

async fn receive_location(
    bot: Bot,
    dialogue: MyDialogue,
    (full_name, age): (String, u8), // Available from `State::ReceiveLocation`.
    msg: Message,
) -> HandlerResult {
    match msg.text() {
        Some(location) => {
            let report = format!("Full name: {full_name}\nAge: {age}\nLocation: {location}");
            bot.send_message(msg.chat.id, report).await?;
            dialogue.exit().await?;
        }
        None => {
            bot.send_message(msg.chat.id, "Send me plain text.").await?;
        }
    }

    Ok(())
}

More examples >>

FAQ

Q: Where I can ask questions?

A:

  • Issues is a good place for well-formed questions about the library design, enhancements, and bug reports.
  • GitHub Discussions is a place where you can ask us for help in a less formal manner.
  • If you need quick help in real-time, you should ask a question in our official Telegram group.

Q: Do you support the Telegram API for clients?

A: No, only the bots API.

Q: Can I use webhooks?

A: You can! teloxide has a built-in support for webhooks in dispatching::update_listeners::webhooks module. See how it's used in examples/ngrok_ping_pong_bot and examples/heroku_ping_pong_bot.

Q: Can I handle both callback queries and messages within a single dialogue?

A: Yes, see examples/purchase.rs.

Community bots

Feel free to propose your own bot to our collection!

Show bots using `teloxide` older than v0.6.0

See 700+ other public repositories using teloxide >>

Contributing

See CONRIBUTING.md.

About

A snapshot of teloxide repository before we've rewritten the history in order to delete big files.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Rust 100.0%