-
Notifications
You must be signed in to change notification settings - Fork 528
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Utilize TF 2.0 summaries in core when V2 behavior is enabled. #93
Fallback to old TF v1 versions of summaries when TF v2 behavior is not enabled. Also add additional summary, estimator, and autoensemble tests that only execute when TF v2 is enabled. PiperOrigin-RevId: 269815407
- Loading branch information
Showing
13 changed files
with
1,167 additions
and
104 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
"""Tests for AdaNet AutoEnsembleEstimator in TF 2. | ||
Copyright 2019 The AdaNet Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
https://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
import shutil | ||
import sys | ||
|
||
from absl import flags | ||
from absl.testing import parameterized | ||
from adanet.autoensemble.estimator import AutoEnsembleEstimator | ||
import tensorflow as tf | ||
|
||
# pylint: disable=g-direct-tensorflow-import | ||
from tensorflow.python.estimator.export import export | ||
from tensorflow_estimator.python.estimator.head import regression_head | ||
# pylint: enable=g-direct-tensorflow-import | ||
|
||
|
||
class AutoEnsembleEstimatorV2Test(parameterized.TestCase, tf.test.TestCase): | ||
|
||
def setUp(self): | ||
super(AutoEnsembleEstimatorV2Test, self).setUp() | ||
# Setup and cleanup test directory. | ||
# Flags are not automatically parsed at this point. | ||
flags.FLAGS(sys.argv) | ||
self.test_subdirectory = os.path.join(flags.FLAGS.test_tmpdir, self.id()) | ||
shutil.rmtree(self.test_subdirectory, ignore_errors=True) | ||
os.makedirs(self.test_subdirectory) | ||
|
||
def tearDown(self): | ||
super(AutoEnsembleEstimatorV2Test, self).tearDown() | ||
shutil.rmtree(self.test_subdirectory, ignore_errors=True) | ||
|
||
# pylint: disable=g-long-lambda | ||
@parameterized.named_parameters( | ||
{ | ||
"testcase_name": | ||
"candidate_pool_lambda", | ||
"candidate_pool": | ||
lambda head, feature_columns, optimizer: lambda config: { | ||
"dnn": | ||
tf.estimator.DNNEstimator( | ||
head=head, | ||
feature_columns=feature_columns, | ||
optimizer=optimizer, | ||
hidden_units=[3], | ||
config=config), | ||
"linear": | ||
tf.estimator.LinearEstimator( | ||
head=head, | ||
feature_columns=feature_columns, | ||
optimizer=optimizer, | ||
config=config), | ||
}, | ||
"want_loss": | ||
.209, | ||
},) | ||
# pylint: enable=g-long-lambda | ||
def test_auto_ensemble_estimator_lifecycle(self, | ||
candidate_pool, | ||
want_loss, | ||
max_train_steps=30): | ||
features = {"input_1": [[1., 0.]]} | ||
labels = [[1.]] | ||
|
||
run_config = tf.estimator.RunConfig(tf_random_seed=42) | ||
head = regression_head.RegressionHead() | ||
|
||
# Always create optimizers in a lambda to prevent error like: | ||
# `RuntimeError: Cannot set `iterations` to a new Variable after the | ||
# Optimizer weights have been created` | ||
optimizer = lambda: tf.keras.optimizers.SGD(lr=.01) | ||
feature_columns = [tf.feature_column.numeric_column("input_1", shape=[2])] | ||
|
||
def train_input_fn(): | ||
input_features = {} | ||
for key, feature in features.items(): | ||
input_features[key] = tf.constant(feature, name=key) | ||
input_labels = tf.constant(labels, name="labels") | ||
return input_features, input_labels | ||
|
||
def test_input_fn(): | ||
dataset = tf.data.Dataset.from_tensors([tf.constant(features["input_1"])]) | ||
input_features = tf.compat.v1.data.make_one_shot_iterator( | ||
dataset).get_next() | ||
return {"input_1": input_features}, None | ||
|
||
estimator = AutoEnsembleEstimator( | ||
head=head, | ||
candidate_pool=candidate_pool(head, feature_columns, optimizer), | ||
max_iteration_steps=10, | ||
force_grow=True, | ||
model_dir=self.test_subdirectory, | ||
config=run_config) | ||
|
||
# Train for three iterations. | ||
estimator.train(input_fn=train_input_fn, max_steps=max_train_steps) | ||
|
||
# Evaluate. | ||
eval_results = estimator.evaluate(input_fn=train_input_fn, steps=1) | ||
|
||
self.assertAllClose(max_train_steps, eval_results["global_step"]) | ||
self.assertAllClose(want_loss, eval_results["loss"], atol=.3) | ||
|
||
# Predict. | ||
predictions = estimator.predict(input_fn=test_input_fn) | ||
for prediction in predictions: | ||
self.assertIsNotNone(prediction["predictions"]) | ||
|
||
# Export SavedModel. | ||
def serving_input_fn(): | ||
"""Input fn for serving export, starting from serialized example.""" | ||
serialized_example = tf.compat.v1.placeholder( | ||
dtype=tf.string, shape=(None), name="serialized_example") | ||
for key, value in features.items(): | ||
features[key] = tf.constant(value) | ||
return export.SupervisedInputReceiver( | ||
features=features, | ||
labels=tf.constant(labels), | ||
receiver_tensors=serialized_example) | ||
|
||
export_dir_base = os.path.join(self.test_subdirectory, "export") | ||
estimator.export_saved_model( | ||
export_dir_base=export_dir_base, | ||
serving_input_receiver_fn=serving_input_fn) | ||
|
||
|
||
if __name__ == "__main__": | ||
tf.enable_v2_behavior() | ||
tf.test.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.