Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MultiHeadAttention Layer #1062

Merged
merged 25 commits into from
Mar 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/CODEOWNERS
Validating CODEOWNERS rules …
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@

/tensorflow_addons/layers/gelu*.py @aakashkumarnain
/tensorflow_addons/layers/maxout*.py @failure-to-thrive
/tensorflow_addons/layers/multihead_attention*.py @cgarciae
/tensorflow_addons/layers/netvlad*.py @joel-shor
/tensorflow_addons/layers/normalizations*.py @smokrow
/tensorflow_addons/layers/optical_flow*.py @failure-to-thrive
Expand Down
13 changes: 13 additions & 0 deletions tensorflow_addons/layers/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ py_library(
"__init__.py",
"gelu.py",
"maxout.py",
"multihead_attention.py",
"netvlad.py",
"normalizations.py",
"optical_flow.py",
Expand Down Expand Up @@ -147,3 +148,15 @@ py_test(
":layers",
],
)

py_test(
name = "multihead_attention_test",
size = "small",
srcs = [
"multihead_attention_test.py",
],
main = "multihead_attention_test.py",
deps = [
":layers",
],
)
1 change: 1 addition & 0 deletions tensorflow_addons/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

from tensorflow_addons.layers.gelu import GELU
from tensorflow_addons.layers.maxout import Maxout
from tensorflow_addons.layers.multihead_attention import MultiHeadAttention
from tensorflow_addons.layers.normalizations import GroupNormalization
from tensorflow_addons.layers.normalizations import InstanceNormalization
from tensorflow_addons.layers.optical_flow import CorrelationCost
Expand Down
295 changes: 295 additions & 0 deletions tensorflow_addons/layers/multihead_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================

import typing

import tensorflow as tf


@tf.keras.utils.register_keras_serializable(package="Addons")
class MultiHeadAttention(tf.keras.layers.Layer):
r"""
MultiHead Attention layer.

Defines the MultiHead Attention operation as defined in
[Attention Is All You Need](https://arxiv.org/abs/1706.03762) which takes
in a `query`, `key` and `value` tensors returns the dot-product attention
between them:

```python
mha = MultiHeadAttention(head_size=128, num_heads=128)

query = tf.random.uniform((32, 20, 200)) # (batch_size, query_elements, query_depth)
key = tf.random.uniform((32, 15, 300)) # (batch_size, key_elements, key_depth)
value = tf.random.uniform((32, 15, 400)) # (batch_size, key_elements, value_depth)

attention = mha([query, key, value]) # (batch_size, query_elements, value_depth)
```

If `value` is not given then internally `value = key` will be used:

```python
mha = MultiHeadAttention(head_size=128, num_heads=128)

query = tf.random.uniform((32, 20, 200)) # (batch_size, query_elements, query_depth)
key = tf.random.uniform((32, 15, 300)) # (batch_size, key_elements, key_depth)

attention = mha([query, key]) # (batch_size, query_elements, key_depth)
```

Arguments
head_size: int, dimensionality of the `query`, `key` and `value` tensors
after the linear transformation.
num_heads: int, number of attention heads.
output_size: int, dimensionality of the output space, if `None` then the
input dimension of
`value` or `key` will be used, default `None`.
dropout: float, `rate` parameter for the dropout layer that is
applied to attention after softmax,
default `0`.
use_projection_bias: bool, whether to use a bias term after the linear
output projection.
return_attn_coef: bool, if `True`, return the attention coefficients as
an additional output argument.
kernel_initializer: initializer, initializer for the kernel weights.
kernel_regularizer: regularizer, regularizer for the kernel weights.
kernel_constraint: constraint, constraint for the kernel weights.
bias_initializer: initializer, initializer for the bias weights.
bias_regularizer: regularizer, regularizer for the bias weights.
bias_constraint: constraint, constraint for the bias weights.

Call Arguments
inputs: List of the following tensors:
* `query`: Tensor of shape `(..., query_elements, query_depth)`
* `key`: `Tensor of shape '(..., key_elements, key_depth)`
* `value`: Tensor of shape `(..., key_elements, value_depth)` (optional)
mask: a binary Tensor of shape `[batch_size?, num_heads?, query_elements, key_elements]`
which specifies which query elements can attendo to which key elements,
`1` indicates attention and `0` indicates no attention.

Output shape
- `(..., query_elements, output_size)` if `output_size` is given, else
- `(..., query_elements, value_depth)` if `value` is given, else
- `(..., query_elements, key_depth)`
"""

def __init__(
self,
head_size: int,
num_heads: int,
output_size: int = None,
dropout: float = 0.0,
use_projection_bias: bool = True,
return_attn_coef: bool = False,
kernel_initializer: typing.Union[str, typing.Callable] = "glorot_uniform",
kernel_regularizer: typing.Union[str, typing.Callable] = None,
kernel_constraint: typing.Union[str, typing.Callable] = None,
bias_initializer: typing.Union[str, typing.Callable] = "zeros",
bias_regularizer: typing.Union[str, typing.Callable] = None,
bias_constraint: typing.Union[str, typing.Callable] = None,
**kwargs
):
super().__init__(**kwargs)

if output_size is not None and output_size < 1:
raise ValueError("output_size must be a positive number")

self.head_size = head_size
self.num_heads = num_heads
self.output_size = output_size
self.use_projection_bias = use_projection_bias
self.return_attn_coef = return_attn_coef

self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self.bias_constraint = tf.keras.constraints.get(bias_constraint)

self.dropout = tf.keras.layers.Dropout(dropout)
self._droput_rate = dropout

def build(self, input_shape):

num_query_features = input_shape[0][-1]
num_key_features = input_shape[1][-1]
num_value_features = (
input_shape[2][-1] if len(input_shape) > 2 else num_key_features
)
output_size = (
self.output_size if self.output_size is not None else num_value_features
)

self.query_kernel = self.add_weight(
name="query_kernel",
shape=[self.num_heads, num_query_features, self.head_size],
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.key_kernel = self.add_weight(
name="key_kernel",
shape=[self.num_heads, num_key_features, self.head_size],
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.value_kernel = self.add_weight(
name="value_kernel",
shape=[self.num_heads, num_value_features, self.head_size],
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.projection_kernel = self.add_weight(
name="projection_kernel",
shape=[self.num_heads, self.head_size, output_size],
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)

if self.use_projection_bias:
self.projection_bias = self.add_weight(
name="projection_bias",
shape=[output_size],
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
)
else:
self.projection_bias = None

super().build(input_shape)

def call(self, inputs, training=None, mask=None):

# einsum nomenclature
# ------------------------
# N = query elements
# M = key/value elements
# H = heads
# I = input features
# O = output features

query = inputs[0]
key = inputs[1]
value = inputs[2] if len(inputs) > 2 else key

# verify shapes
if mask is not None:
if len(mask.shape) < 2:
raise ValueError("'mask' must have atleast 2 dimensions")
if query.shape[-2] != mask.shape[-2]:
raise ValueError(
"mask's second to last dimension must be equal to the number of elements in 'query'"
)
if key.shape[-2] != mask.shape[-1]:
raise ValueError(
"mask's last dimension must be equal to the number of elements in 'key'"
)
if key.shape[-2] != value.shape[-2]:
raise ValueError(
"the number of elements in 'key' must be equal to the same as the number of elements in 'value'"
)

# Linear transformations
query = tf.einsum("...NI , HIO -> ...NHO", query, self.query_kernel)
guillaumekln marked this conversation as resolved.
Show resolved Hide resolved
key = tf.einsum("...MI , HIO -> ...MHO", key, self.key_kernel)
value = tf.einsum("...MI , HIO -> ...MHO", value, self.value_kernel)

# Scale dot-product, doing the division to either query or key
# instead of their product saves some computation
depth = tf.constant(self.head_size, dtype=tf.float32)
query /= tf.sqrt(depth)
guillaumekln marked this conversation as resolved.
Show resolved Hide resolved

# Calculate dot product attention
logits = tf.einsum("...NHO,...MHO->...HNM", query, key)

# apply mask
if mask is not None:
mask = tf.cast(mask, tf.float32)

# possibly expand on the head dimension so broadcasting works
if len(mask.shape) != len(logits.shape):
mask = tf.expand_dims(mask, -3)

logits += -10e9 * (1.0 - mask)

attn_coef = tf.nn.softmax(logits)

# attention dropout
attn_coef_dropout = self.dropout(attn_coef, training=training)

# attention * value
multihead_output = tf.einsum("...HNM,...MHI->...NHI", attn_coef_dropout, value)

# Run the outputs through another linear projection layer. Recombining heads
# is automatically done.
output = tf.einsum(
"...NHI,HIO->...NO", multihead_output, self.projection_kernel
)

if self.projection_bias is not None:
output += self.projection_bias

if self.return_attn_coef:
return output, attn_coef
else:
return output

def compute_output_shape(self, input_shape):
num_value_features = (
input_shape[2][-1] if len(input_shape) > 2 else input_shape[1][-1]
)
output_size = (
self.output_size if self.output_size is not None else num_value_features
)

output_shape = input_shape[0][:-1] + (output_size,)

if self.return_attn_coef:
num_query_elements = input_shape[0][-2]
num_key_elements = input_shape[1][-2]
attn_coef_shape = input_shape[0][:-2] + (
self.num_heads,
num_query_elements,
num_key_elements,
)

return output_shape, attn_coef_shape
else:
return output_shape

def get_config(self):
config = super().get_config()

config.update(
head_size=self.head_size,
num_heads=self.num_heads,
output_size=self.output_size,
dropout=self._droput_rate,
use_projection_bias=self.use_projection_bias,
return_attn_coef=self.return_attn_coef,
kernel_initializer=tf.keras.initializers.serialize(self.kernel_initializer),
kernel_regularizer=tf.keras.regularizers.serialize(self.kernel_regularizer),
kernel_constraint=tf.keras.constraints.serialize(self.kernel_constraint),
bias_initializer=tf.keras.initializers.serialize(self.bias_initializer),
bias_regularizer=tf.keras.regularizers.serialize(self.bias_regularizer),
bias_constraint=tf.keras.constraints.serialize(self.bias_constraint),
)

return config
Loading