Skip to content

Commit

Permalink
Restructure TF Privacy to be more in line with other repos in the TF …
Browse files Browse the repository at this point in the history
…ecosystem.

PiperOrigin-RevId: 274674077
  • Loading branch information
schien1729 authored and tensorflower-gardener committed Oct 14, 2019
1 parent c0e05f6 commit 1ce8cd4
Show file tree
Hide file tree
Showing 47 changed files with 6,849 additions and 23 deletions.
57 changes: 57 additions & 0 deletions tensorflow_privacy/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Copyright 2019, The TensorFlow Privacy Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow Privacy library."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

# pylint: disable=g-import-not-at-top

if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
pass
else:
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import SampleEntry

from tensorflow_privacy.privacy.dp_query.dp_query import DPQuery
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianAverageQuery
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianSumQuery
from tensorflow_privacy.privacy.dp_query.nested_query import NestedQuery
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacySumQuery
from tensorflow_privacy.privacy.dp_query.normalized_query import NormalizedQuery
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery

from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer

try:
from tensorflow_privacy.privacy.bolt_on.models import BoltOnModel
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexHuber
except ImportError:
# module `bolt_on` not yet available in this version of TF Privacy
pass
5 changes: 5 additions & 0 deletions tensorflow_privacy/privacy/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
package(default_visibility = ["//visibility:public"])

licenses(["notice"])

exports_files(["LICENSE"])
13 changes: 13 additions & 0 deletions tensorflow_privacy/privacy/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2019, The TensorFlow Privacy Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Empty file.
97 changes: 97 additions & 0 deletions tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Command-line script for computing privacy of a model trained with DP-SGD.
The script applies the RDP accountant to estimate privacy budget of an iterated
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
Example:
compute_dp_sgd_privacy
--N=60000 \
--batch_size=256 \
--noise_multiplier=1.12 \
--epochs=60 \
--delta=1e-5
The output states that DP-SGD with these parameters satisfies (2.92, 1e-5)-DP.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import sys

from absl import app
from absl import flags

# Opting out of loading all sibling packages and their dependencies.
sys.skip_tf_privacy_import = True

from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent

FLAGS = flags.FLAGS

flags.DEFINE_integer('N', None, 'Total number of examples')
flags.DEFINE_integer('batch_size', None, 'Batch size')
flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD')
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
flags.DEFINE_float('delta', 1e-6, 'Target delta')

flags.mark_flag_as_required('N')
flags.mark_flag_as_required('batch_size')
flags.mark_flag_as_required('noise_multiplier')
flags.mark_flag_as_required('epochs')


def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis."""

# compute_rdp requires that sigma be the ratio of the standard deviation of
# the Gaussian noise to the l2-sensitivity of the function to which it is
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
rdp = compute_rdp(q, sigma, steps, orders)

eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)

print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
' over {} steps satisfies'.format(100 * q, sigma, steps), end=' ')
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
eps, delta))
print('The optimal RDP order is {}.'.format(opt_order))

if opt_order == max(orders) or opt_order == min(orders):
print('The privacy estimate is likely to be improved by expanding '
'the set of orders.')


def main(argv):
del argv # argv is not used.

q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio.
if q > 1:
raise app.UsageError('N must be larger than the batch size.')
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
list(range(5, 64)) + [128, 256, 512])
steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size))

apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta)


if __name__ == '__main__':
app.run(main)
Loading

0 comments on commit 1ce8cd4

Please sign in to comment.