-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8d30bab
commit 676ee1f
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
98 changes: 98 additions & 0 deletions
98
forge/test/models/pytorch/multimodal/deepseek/test_deepseek_math.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# SPDX-FileCopyrightText: (c) 2025 Tenstorrent AI ULC | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
import pytest | ||
import torch | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | ||
|
||
import forge | ||
|
||
from test.models.utils import Framework, Source, Task, build_module_name | ||
|
||
|
||
class Wrapper(torch.nn.Module): | ||
def __init__(self, model): | ||
super().__init__() | ||
self.model = model | ||
|
||
def forward(self, input_tensor): | ||
return self.model(input_tensor, max_new_tokens=100).logits | ||
|
||
|
||
@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"]) | ||
def test_deepseek_inference_no_cache_cpu(variant): | ||
model_name = f"deepseek-ai/{variant}" | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") | ||
model.generation_config = GenerationConfig.from_pretrained(model_name) | ||
model.generation_config.pad_token_id = model.generation_config.eos_token_id | ||
model.generation_config.use_cache = False | ||
framework_model = Wrapper(model) | ||
|
||
# Prepare input sentence | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}.", | ||
} | ||
] | ||
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | ||
max_new_tokens = 100 | ||
generated_tokens = input_ids | ||
for i in range(max_new_tokens): | ||
logits = framework_model(input_ids) | ||
next_token_logits = logits[:, -1, :] | ||
next_token_id = torch.argmax(next_token_logits, dim=-1) | ||
|
||
if next_token_id == tokenizer.eos_token_id: | ||
break | ||
|
||
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(0)], dim=-1) | ||
|
||
# Generated text | ||
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | ||
print(generated_text) | ||
|
||
|
||
@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"]) | ||
def test_deepseek_inference(record_forge_property, variant): | ||
# Build Module Name | ||
module_name = build_module_name( | ||
framework=Framework.PYTORCH, model="deepseek", variant=variant, task=Task.QA, source=Source.HUGGINGFACE | ||
) | ||
|
||
# Record Forge Property | ||
record_forge_property("model_name", module_name) | ||
|
||
model_name = f"deepseek-ai/{variant}" | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") | ||
model.generation_config = GenerationConfig.from_pretrained(model_name) | ||
model.generation_config.pad_token_id = model.generation_config.eos_token_id | ||
model.generation_config.use_cache = False | ||
framework_model = Wrapper(model) | ||
|
||
# Prepare input sentence | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}.", | ||
} | ||
] | ||
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | ||
compiled_model = forge.compile(framework_model, sample_inputs=[input_ids], module_name=module_name) | ||
max_new_tokens = 1 | ||
generated_tokens = input_ids | ||
for i in range(max_new_tokens): | ||
logits = compiled_model(input_ids) | ||
next_token_logits = logits[:, -1, :] | ||
next_token_id = torch.argmax(next_token_logits, dim=-1) | ||
|
||
if next_token_id == tokenizer.eos_token_id: | ||
break | ||
|
||
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(0)], dim=-1) | ||
|
||
# Generated text | ||
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | ||
print(generated_text) |