-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add test for deepseek_math #1148
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# SPDX-FileCopyrightText: (c) 2025 Tenstorrent AI ULC | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
import pytest | ||
import torch | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | ||
|
||
import forge | ||
|
||
from test.models.utils import Framework, Source, Task, build_module_name | ||
|
||
|
||
def generation(max_new_tokens, compiled_model, input_ids, tokenizer): | ||
for i in range(max_new_tokens): | ||
logits = compiled_model(input_ids) | ||
next_token_logits = logits[:, -1, :] | ||
next_token_id = torch.argmax(next_token_logits, dim=-1) | ||
|
||
if next_token_id == tokenizer.eos_token_id: | ||
break | ||
|
||
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(0)], dim=-1) | ||
|
||
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | ||
return generated_text | ||
|
||
|
||
def download_model_and_tokenizer(model_name): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. One suggestion—would it be possible to add an option to set |
||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="cpu") | ||
model.generation_config = GenerationConfig.from_pretrained(model_name) | ||
model.generation_config.pad_token_id = model.generation_config.eos_token_id | ||
model.generation_config.use_cache = False | ||
|
||
# Prepare input sentence | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}.", | ||
} | ||
] | ||
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | ||
return model, tokenizer, input_ids | ||
Comment on lines
+13
to
+43
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we just move this to |
||
|
||
|
||
class Wrapper(torch.nn.Module): | ||
def __init__(self, model): | ||
super().__init__() | ||
self.model = model | ||
|
||
def forward(self, input_tensor): | ||
return self.model(input_tensor, max_new_tokens=100).logits | ||
|
||
|
||
@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"]) | ||
def test_deepseek_inference_no_cache_cpu(variant): | ||
model_name = f"deepseek-ai/{variant}" | ||
model, tokenizer, input_ids = download_model_and_tokenizer(model_name) | ||
|
||
framework_model = Wrapper(model) | ||
|
||
generated_text = generation( | ||
max_new_tokens=100, compiled_model=framework_model, input_ids=input_ids, tokenizer=tokenizer | ||
) | ||
print(generated_text) | ||
|
||
|
||
@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"]) | ||
def test_deepseek_inference(record_forge_property, variant): | ||
# Build Module Name | ||
module_name = build_module_name( | ||
framework=Framework.PYTORCH, model="deepseek", variant=variant, task=Task.QA, source=Source.HUGGINGFACE | ||
) | ||
|
||
# Record Forge Property | ||
record_forge_property("model_name", module_name) | ||
|
||
model_name = f"deepseek-ai/{variant}" | ||
model, tokenizer, input_ids = download_model_and_tokenizer(model_name) | ||
framework_model = Wrapper(model) | ||
|
||
compiled_model = forge.compile(framework_model, sample_inputs=[input_ids], module_name=module_name) | ||
generated_text = generation( | ||
max_new_tokens=1, compiled_model=compiled_model, input_ids=input_ids, tokenizer=tokenizer | ||
) | ||
print(generated_text) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Comparing a tensor to an integer can work when the tensor has a single element, but it’s clearer and safer to extract the scalar value :))
Something like this should work:
next_token_id.item() == tokenizer.eos_token_id: