Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for deepseek_math #1148

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# SPDX-FileCopyrightText: (c) 2025 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

import forge

from test.models.utils import Framework, Source, Task, build_module_name


def generation(max_new_tokens, compiled_model, input_ids, tokenizer):
for i in range(max_new_tokens):
logits = compiled_model(input_ids)
next_token_logits = logits[:, -1, :]
next_token_id = torch.argmax(next_token_logits, dim=-1)

if next_token_id == tokenizer.eos_token_id:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comparing a tensor to an integer can work when the tensor has a single element, but it’s clearer and safer to extract the scalar value :))
Something like this should work:
next_token_id.item() == tokenizer.eos_token_id:

break

input_ids = torch.cat([input_ids, next_token_id.unsqueeze(0)], dim=-1)

generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
return generated_text


def download_model_and_tokenizer(model_name):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One suggestion—would it be possible to add an option to set use_cache to True? We might consider an approach similar to what’s shown here. Also, as @vkovinicTT mentioned, this function might fit better in the utils folder :))

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="cpu")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.use_cache = False

# Prepare input sentence
messages = [
{
"role": "user",
"content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}.",
}
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
return model, tokenizer, input_ids
Comment on lines +13 to +43
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we just move this to utils folder.



class Wrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model

def forward(self, input_tensor):
return self.model(input_tensor, max_new_tokens=100).logits


@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"])
def test_deepseek_inference_no_cache_cpu(variant):
model_name = f"deepseek-ai/{variant}"
model, tokenizer, input_ids = download_model_and_tokenizer(model_name)

framework_model = Wrapper(model)

generated_text = generation(
max_new_tokens=100, compiled_model=framework_model, input_ids=input_ids, tokenizer=tokenizer
)
print(generated_text)


@pytest.mark.parametrize("variant", ["deepseek-math-7b-instruct"])
def test_deepseek_inference(record_forge_property, variant):
# Build Module Name
module_name = build_module_name(
framework=Framework.PYTORCH, model="deepseek", variant=variant, task=Task.QA, source=Source.HUGGINGFACE
)

# Record Forge Property
record_forge_property("model_name", module_name)

model_name = f"deepseek-ai/{variant}"
model, tokenizer, input_ids = download_model_and_tokenizer(model_name)
framework_model = Wrapper(model)

compiled_model = forge.compile(framework_model, sample_inputs=[input_ids], module_name=module_name)
generated_text = generation(
max_new_tokens=1, compiled_model=compiled_model, input_ids=input_ids, tokenizer=tokenizer
)
print(generated_text)
Loading