Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for minimum op #961

Merged
merged 1 commit into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions include/ttmlir/Dialect/TTIR/IR/TTIROps.td
Original file line number Diff line number Diff line change
Expand Up @@ -269,13 +269,6 @@ class TTIR_ElementwiseBinaryOp<string mnemonic, list<Trait> traits = []> :
];
}

def TTIR_SubtractOp : TTIR_ElementwiseBinaryOp<"subtract"> {
let summary = "Eltwise subtract.";
let description = [{
Eltwise subtract operation.
}];
}

def TTIR_EqualOp : TTIR_ElementwiseBinaryOp<"eq"> {
let summary = "Eltwise equal to.";
let description = [{
Expand Down Expand Up @@ -344,6 +337,26 @@ def TTIR_MaximumOp : TTIR_ElementwiseBinaryOp<"maximum"> {
}];
}

def TTIR_MinimumOp : TTIR_ElementwiseBinaryOp<"minimum"> {
let summary = "Eltwise minimum OP.";
let description = [{
Calculates minimum of input tensors' values element-wise and stores result
in output tensor.

Example:
%lhs: [[3, 2, 7], [1, 4, 4]]
%rhs: [[1, 4, 2], [1, 2, 3]]
"ttir.minimum"(%lhs, %rhs, %out) -> %out: [[1, 2, 2], [1, 2, 3]]
}];
}

def TTIR_SubtractOp : TTIR_ElementwiseBinaryOp<"subtract"> {
let summary = "Eltwise subtract.";
let description = [{
Eltwise subtract operation.
}];
}

class TTIR_ReductionOp<string mnemonic, list<Trait> traits = []> :
TTIR_DPSOp<mnemonic, !listconcat(traits, [TTIR_GenericRegionOpInterface])> {

Expand Down
41 changes: 27 additions & 14 deletions include/ttmlir/Dialect/TTNN/IR/TTNNOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -246,20 +246,6 @@ def TTNN_DivOp : TTNN_ElementwiseBinaryOp<"div"> {
}];
}

def TTNN_SubtractOp : TTNN_ElementwiseBinaryOp<"subtract"> {
let summary = "Eltwise subtract.";
let description = [{
Eltwise subtract operation.
}];
}

def TTNN_MultiplyOp : TTNN_ElementwiseBinaryOp<"multiply"> {
let summary = "Eltwise multiply.";
let description = [{
Eltwise multiply operation.
}];
}

def TTNN_EqualOp : TTNN_ElementwiseBinaryOp<"eq"> {
let summary = "Eltwise equal to.";
let description = [{
Expand Down Expand Up @@ -328,6 +314,33 @@ def TTNN_MaximumOp : TTNN_ElementwiseBinaryOp<"maximum"> {
}];
}

def TTNN_MinimumOp : TTNN_ElementwiseBinaryOp<"minimum"> {
let summary = "Eltwise minimum OP.";
let description = [{
Calculates minimum of input tensors' values element-wise and stores result
in output tensor.

Example:
%lhs: [[3, 2, 7], [1, 4, 4]]
%rhs: [[1, 4, 2], [1, 2, 3]]
"ttnn.minimum"(%lhs, %rhs, %out) -> %out: [[1, 2, 2], [1, 2, 3]]
}];
}

def TTNN_MultiplyOp : TTNN_ElementwiseBinaryOp<"multiply"> {
let summary = "Eltwise multiply.";
let description = [{
Eltwise multiply operation.
}];
}

def TTNN_SubtractOp : TTNN_ElementwiseBinaryOp<"subtract"> {
let summary = "Eltwise subtract.";
let description = [{
Eltwise subtract operation.
}];
}

class TTNN_ReductionOp<string mnemonic, list<Trait> traits = []> : TTNN_Op<mnemonic, traits> {
let summary = "Reduction op.";
let description = [{
Expand Down
1 change: 1 addition & 0 deletions include/ttmlir/Target/TTNN/program.fbs
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ enum EltwiseOpType: uint32 {
LogicalOr = 21,
LogicalNot = 22,
Cbrt = 23,
Minimum = 24,
}

table EltwiseOp {
Expand Down
12 changes: 7 additions & 5 deletions lib/Conversion/StableHLOToTTIR/StableHLOToTTIRPatterns.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -879,15 +879,17 @@ void addElementwiseBinaryOpsConversionPatterns(MLIRContext *ctx,

patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::AddOp, mlir::tt::ttir::AddOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::SubtractOp, mlir::tt::ttir::SubtractOp>>(typeConverter,
ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::MulOp, mlir::tt::ttir::MultiplyOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::DivOp, mlir::tt::ttir::DivOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::MaxOp, mlir::tt::ttir::MaximumOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::MinOp, mlir::tt::ttir::MinimumOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::MulOp, mlir::tt::ttir::MultiplyOp>>(typeConverter, ctx);
patterns.add<StableHLOToTTIROpDefaultConversionPattern<
mlir::stablehlo::SubtractOp, mlir::tt::ttir::SubtractOp>>(typeConverter,
ctx);
}

void addReduceOpsConversionPatterns(MLIRContext *ctx,
Expand Down
1 change: 1 addition & 0 deletions lib/Conversion/TTIRToTTNN/TTIRToTTNN.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -820,6 +820,7 @@ void populateTTIRToTTNNPatterns(MLIRContext *ctx, RewritePatternSet &patterns,
ElementwiseOpConversionPattern<ttir::LessEqualOp, ttnn::LessEqualOp>,
ElementwiseOpConversionPattern<ttir::LessThanOp, ttnn::LessThanOp>,
ElementwiseOpConversionPattern<ttir::MaximumOp, ttnn::MaximumOp>,
ElementwiseOpConversionPattern<ttir::MinimumOp, ttnn::MinimumOp>,
ElementwiseOpConversionPattern<ttir::NegOp, ttnn::NegOp>,
ElementwiseOpConversionPattern<ttir::ReluOp, ttnn::ReluOp>,
ElementwiseOpConversionPattern<ttir::SqrtOp, ttnn::SqrtOp>,
Expand Down
1 change: 1 addition & 0 deletions lib/Conversion/TTNNToEmitC/TTNNToEmitC.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -639,6 +639,7 @@ void populateTTNNToEmitCPatterns(mlir::MLIRContext *ctx,
DefaultOpConversionPattern<ttnn::LessEqualOp>,
DefaultOpConversionPattern<ttnn::LessThanOp>,
DefaultOpConversionPattern<ttnn::MaximumOp>,
DefaultOpConversionPattern<ttnn::MinimumOp>,
DefaultOpConversionPattern<ttnn::DivOp>>(typeConverter, ctx);

// Tensor manipulation ops
Expand Down
6 changes: 6 additions & 0 deletions lib/Target/TTNN/TTNNToFlatbuffer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -325,6 +325,8 @@ createEltwiseOp(FlatbufferObjectCache &cache, EltwiseOp op) {
type = ::tt::target::ttnn::EltwiseOpType::LessThan;
} else if constexpr (std::is_same_v<EltwiseOp, MaximumOp>) {
type = ::tt::target::ttnn::EltwiseOpType::Maximum;
} else if constexpr (std::is_same_v<EltwiseOp, MinimumOp>) {
type = ::tt::target::ttnn::EltwiseOpType::Minimum;
} else if constexpr (std::is_same_v<EltwiseOp, ReluOp>) {
type = ::tt::target::ttnn::EltwiseOpType::Relu;
} else if constexpr (std::is_same_v<EltwiseOp, SqrtOp>) {
Expand Down Expand Up @@ -568,6 +570,10 @@ emitTTNNOperation(FlatbufferObjectCache &cache, Operation *op,
return createOperation(cache, createEltwiseOp(cache, maximumOp),
debugString);
}
if (auto minimumOp = dyn_cast<MinimumOp>(op); minimumOp) {
return createOperation(cache, createEltwiseOp(cache, minimumOp),
debugString);
}
if (auto reluOp = dyn_cast<ReluOp>(op); reluOp) {
return createOperation(cache, createEltwiseOp(cache, reluOp), debugString);
}
Expand Down
4 changes: 4 additions & 0 deletions runtime/lib/ttnn/operations/eltwise/binary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,10 @@ void run(const ::tt::target::ttnn::EltwiseOp *op, ProgramContext &context) {
runEltwiseBinaryCompositeOP(op, tensorPool, ::ttnn::maximum);
break;
}
case ::tt::target::ttnn::EltwiseOpType::Minimum: {
runEltwiseBinaryCompositeOP(op, tensorPool, ::ttnn::minimum);
break;
}
default:
throw std::invalid_argument("Unsupported Eltwise Binary operation");
}
Expand Down
15 changes: 15 additions & 0 deletions test/ttmlir/Conversion/StableHLOToTTIR/binary/minimum_op.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
// REQUIRES: stablehlo
// RUN: ttmlir-opt --stablehlo-to-ttir-pipeline %s | FileCheck %s
module @jit_eltwise_minimum attributes {} {
func.func public @test_minimum(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
// CHECK: %[[C:.*]] = tensor.empty()
// CHECK-SAME: [[TENSOR:tensor<13x21x3xf32>]]
// CHECK: %[[C:.*]] = "ttir.minimum"
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: -> [[TENSOR]]
%0 = stablehlo.minimum %arg0, %arg1 : tensor<13x21x3xf32>
return %0 : tensor<13x21x3xf32>
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
// RUN: ttmlir-opt --ttir-to-ttnn-backend-pipeline %s | FileCheck %s
#any_device = #tt.operand_constraint<dram|l1|scalar|tile|any_device|any_device_tile>
module attributes {} {
func.func @forward(%arg0: tensor<64x128xf32>, %arg1: tensor<64x128xf32>) -> tensor<64x128xf32> {
// CHECK: %[[C:.*]] = "ttnn.empty"[[C:.*]]
%0 = tensor.empty() : tensor<64x128xf32>
// CHECK: %[[C:.*]] = "ttnn.minimum"[[C:.*]]
%1 = "ttir.minimum"(%arg0, %arg1, %0) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32>
return %1 : tensor<64x128xf32>
}
}
13 changes: 13 additions & 0 deletions test/ttmlir/Silicon/TTNN/simple_eltwise.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,19 @@ func.func @div(%arg0: tensor<64x128xf32>, %arg1: tensor<64x128xf32>) -> tensor<6
return %1 : tensor<64x128xf32>
}

func.func @minimum(%arg0: tensor<64x128xf32>, %arg1: tensor<64x128xf32>) -> tensor<64x128xf32> {
// CHECK: %[[C:.*]] = "ttnn.empty"
// CHECK-SAME: [[TENSOR:tensor<64x128xf32,]]
%0 = tensor.empty() : tensor<64x128xf32>
// CHECK: %[[C:.*]] = "ttnn.minimum"
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: [[TENSOR]]
// CHECK-SAME: -> [[TENSOR]]
%1 = "ttir.minimum"(%arg0, %arg1, %0) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32>
return %1 : tensor<64x128xf32>
}

func.func @multiply(%arg0: tensor<64x128xf32>, %arg1: tensor<64x128xf32>) -> tensor<64x128xf32> {
// CHECK: %[[C:.*]] = "ttnn.empty"[[C:.*]]
%0 = tensor.empty() : tensor<64x128xf32>
Expand Down
Loading