Skip to content

Commit

Permalink
More spellings
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Jun 22, 2024
1 parent 44c7f6f commit 05ece62
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 17 deletions.
27 changes: 15 additions & 12 deletions PFR/MoreRuzsaDist.lean
Original file line number Diff line number Diff line change
Expand Up @@ -737,20 +737,20 @@ Then we define `D[X_[m]] = H[∑ i, X_i'] - 1/m*∑ i, H[X_i']`, where the `X_i'
of the `X_i`.-/
noncomputable
def multiDist {m : ℕ} {Ω : Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
(X : (i : Fin m) → (Ω i) → G) : ℝ := H[ fun ω ↦ ∑ i, (X i) (ω i); .pi (fun i ↦ (hΩ i).volume)] - (m:ℝ)⁻¹ * ∑ i, H[X i; (hΩ i).volume]
(X : (i : Fin m) → (Ω i) → G) : ℝ := H[ fun ω ↦ ∑ i, (X i) (ω i); .pi (fun i ↦ (hΩ i).volume)] - (m:ℝ)⁻¹ * ∑ i, H[X i]

@[inherit_doc multiDist] notation3:max "D[" X " ; ""]" => multiDist hΩ X

/-- If `X_i` has the same distribution as `Y_i` for each `i`, then `D[X_[m]] = D[Y_[m]]`. -/
lemma multiDist_copy {m :ℕ} {Ω : Fin m → Type*} {Ω' : Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
(hΩ': (i : Fin m) → MeasureSpace (Ω' i)) (X : (i : Fin m) → (Ω i) → G) (X' : (i : Fin m) → (Ω' i) → G)
(hident : ∀ i, IdentDistrib (X i) (X' i) (hΩ i).volume (hΩ' i).volume) :
(hident : ∀ i, IdentDistrib (X i) (X' i) ) :
D[X ; hΩ] = D[X' ; hΩ'] := by sorry

/-- If `X_i` are independent, then `D[X_[m]] = D[Y_[m]]`. -/
lemma multiDist_indep {m : ℕ} {Ω : Type*} (hΩ : MeasureSpace Ω) (X : Fin m → Ω → G)
(hindep : iIndepFun (fun _ ↦ hG) X hΩ.volume) :
D[X ; fun _ ↦ hΩ] = H[∑ i, X i ; hΩ.volume] - (∑ i, H[X i; hΩ.volume]) / m := by sorry
(hindep : iIndepFun (fun _ ↦ hG) X ) :
D[X ; fun _ ↦ hΩ] = H[∑ i, X i] - (∑ i, H[X i]) / m := by sorry

/-- We have `D[X_[m]] ≥ 0`. -/
lemma multiDist_nonneg {m : ℕ} {Ω : Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
Expand All @@ -765,24 +765,27 @@ lemma multiDist_of_perm {m :ℕ} {Ω : Fin m → Type*} (hΩ : (i : Fin m) → M
/-- Let `m ≥ 2`, and let `X_[m]` be a tuple of `G`-valued random variables. Then
`∑ (1 ≤ j, k ≤ m, j ≠ k), d[X_j; -X_k] ≤ m(m-1) D[X_[m]].` -/
lemma multidist_ruzsa_I {m:ℕ} (hm: m ≥ 2) {Ω: Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
(X : (i : Fin m) → (Ω i) → G): ∑ j : Fin m, ∑ k : Fin m, (if j = k then (0:ℝ) else d[X j; (hΩ j).volume # X k; (hΩ k).volume]) ≤ m * (m-1) * D[X; hΩ] := by sorry
(X : (i : Fin m) → (Ω i) → G): ∑ j, ∑ k, (if j = k then (0:ℝ) else d[X j # X k]) ≤ m * (m-1) * D[X; hΩ] := by sorry

/-- Let `m ≥ 2`, and let `X_[m]` be a tuple of `G`-valued random variables. Then
`∑ j, d[X_j;X_j] ≤ 2 m D[X_[m]]`. -/
lemma multidist_ruzsa_II : 0 = 1 := by sorry
lemma multidist_ruzsa_II {m:ℕ} (hm: m ≥ 2) {Ω: Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
(X : (i : Fin m) → (Ω i) → G): ∑ j, d[X j # X j] ≤ 2 * m * D[X; hΩ] := by sorry

/-- Let `I` be an indexing set of size `m ≥ 2`, and let `X_[m]` be a tuple of `G`-valued random
variables. If the `X_i` all have the same distribution, then `D[X_[m]] ≤ m d[X_i;X_i]` for any
`1 \≤ i ≤ m`. -/
lemma multidist_ruzsa_III : 0 = 1 := by sorry
`1 ≤ i ≤ m`. -/
lemma multidist_ruzsa_III {m:ℕ} (hm: m ≥ 2) {Ω: Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i))
(X : (i : Fin m) → (Ω i) → G) (hident: ∀ j k, IdentDistrib (X j) (X k)): ∀ i, D[X; hΩ] ≤ m * d[X i # X i] := by sorry

/-- Let `I` be an indexing set of size `m ≥ 2`, and let `X_[m]` be a tuple of `G`-valued random
variables. Let `W := ∑ (i ∈ I) X_i`. Then `d[W;-W] ≤ 2 D[X_i]`. -/
lemma multidist_ruzsa_IV : 0 = 1 := by sorry
/-- Let `m ≥ 2`, and let `X_[m]` be a tuple of `G`-valued random
variables. Let `W := ∑ X_i`. Then `d[W;-W] ≤ 2 D[X_i]`. -/
lemma multidist_ruzsa_IV {m:ℕ} (hm: m ≥ 2) {Ω : Type*} (hΩ : MeasureSpace Ω) (X : Fin m → Ω → G)
(hindep : iIndepFun (fun _ ↦ hG) X ) : d[ ∑ i, X i # ∑ i, X i ] ≤ 2 * D[X; fun _ ↦ hΩ] := by sorry

/-- If `D[X_[m]]=0`, then for each `i ∈ I` there is a finite subgroup `H_i ≤ G` such that
`d[X_i; U_{H_i}] = 0`. -/
lemma multidist_eq_zero : 0 = 1 := by sorry
lemma multidist_eq_zero {m:ℕ} (hm: m ≥ 2) {Ω: Fin m → Type*} (hΩ : (i : Fin m) → MeasureSpace (Ω i)) (X : (i : Fin m) → (Ω i) → G) (hvanish: D[X; hΩ] = 0) : ∀ i, ∃ H : AddSubgroup G, ∃ U : (Ω i) → G, Measurable U ∧ IsUniform H U ∧ d[X i # U] = 0 := by sorry

/-- If `X_[m] = (X_1, ..., X_m)` and `Y_[m] = (Y_1, ..., Y_m)` are tuples of random variables,
with the `X_i` being `G`-valued (but the `Y_i` need not be), then we define
Expand Down
10 changes: 5 additions & 5 deletions blueprint/src/chapter/torsion.tex
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,7 @@ \section{Multidistance}
Summing this over all pairs $(j,k)$, $j \neq k$ and using Lemma \ref{multidist-indep}, we obtain the claim.
\end{proof}

\begin{lemma}[Multidistance and Ruzsa distance, II]\label{multidist-ruzsa-II}\lean{multidist_ruzsa_II}\uses{multidist-def}
\begin{lemma}[Multidistance and Ruzsa distance, II]\label{multidist-ruzsa-II}\lean{multidist_ruzsa_II}\uses{multidist-def}\leanok
Let $m \ge 2$, and let $X_{[m]}$ be a tuple of $G$-valued random variables. Then
$$\sum_{j=1}^m d[X_j;X_j] \leq 2 m D[X_{[m]}].$$
\end{lemma}
Expand All @@ -220,7 +220,7 @@ \section{Multidistance}
From \Cref{ruzsa-triangle} we have $\dist{X_j}{X_j} \leq 2 \dist{X_j}{-X_k}$, and applying this to every summand in \Cref{multidist-ruzsa-I}, we obtain the claim.
\end{proof}

\begin{lemma}[Multidistance and Ruzsa distance, III]\label{multidist-ruzsa-III}\lean{multidist_ruzsa_III}\uses{multidist-def}
\begin{lemma}[Multidistance and Ruzsa distance, III]\label{multidist-ruzsa-III}\lean{multidist_ruzsa_III}\uses{multidist-def}\leanok
Let $m \ge 2$, and let $X_{[m]}$ be a tuple of $G$-valued random variables. If the $X_i$ all have the same distribution, then $D[X_{[m]}] \leq m d[X_i;X_i]$ for any $1 \leq i \leq m$.
\end{lemma}

Expand All @@ -235,8 +235,8 @@ \section{Multidistance}
and the claim follows.
\end{proof}

\begin{lemma}[Multidistance and Ruzsa distance, IV]\label{multidist-ruzsa-IV}\lean{multidist_ruzsa_IV}\uses{multidist-def}
Let $m \ge 2$, and let $X_{[m]}$ be a tuple of $G$-valued random variables. Let $W := \sum_{i=1}^m X_i$. Then
\begin{lemma}[Multidistance and Ruzsa distance, IV]\label{multidist-ruzsa-IV}\lean{multidist_ruzsa_IV}\uses{multidist-def}\leanok
Let $m \ge 2$, and let $X_{[m]}$ be a tuple of independent $G$-valued random variables. Let $W := \sum_{i=1}^m X_i$. Then
$$ d[W;-W] \leq 2 D[X_i].$$
\end{lemma}

Expand All @@ -257,7 +257,7 @@ \section{Multidistance}
Averaging this over all choices of $(a,b)$ gives $\bbH[W] + 2 D[X_{[m]}]$, and the claim follows from \Cref{ruz-indep}.
\end{proof}

\begin{proposition}[Vanishing]\label{multi-zero}\lean{multidist_eq_zero}\uses{multidist-def}
\begin{proposition}[Vanishing]\label{multi-zero}\lean{multidist_eq_zero}\uses{multidist-def}\leanok
If $D[X_{[m]}]=0$, then for each $1 \leq i \leq m$ there is a finite subgroup $H_i \leq G$ such that $d[X_i; U_{H_i}] = 0$.
\end{proposition}

Expand Down

0 comments on commit 05ece62

Please sign in to comment.