Skip to content

Commit

Permalink
fix blueprint proof of rho-increase
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Nov 9, 2024
1 parent fc915be commit 30d2b36
Showing 1 changed file with 9 additions and 7 deletions.
16 changes: 9 additions & 7 deletions blueprint/src/chapter/further_improvement.tex
Original file line number Diff line number Diff line change
Expand Up @@ -278,22 +278,24 @@ \section{Studying a minimizer}
$$\rho(T_1|T_2,S)+\rho(T_2|T_1,S) - \frac{1}{2}\sum_{i} \rho(Y_i)\le \frac{1}{2}(d[Y_1;Y_2]+d[Y_3;Y_4]+d[Y_1;Y_3]+d[Y_2;Y_4]).$$
\end{lemma}

\begin{proof}\uses{rho-sums-sym, rho-cond-sym}
\begin{proof}\uses{rho-sums-sym, rho-cond, rho-cond-sym, rho-cond-relabeled, cor-fibre}
Let $T_1':=Y_3+Y_4$, $T_2':=Y_2+Y_4$.
First note that
\begin{align*}
\rho(T_1|T_2,S)
&\le \rho(T_1|S) + \frac{1}{2}\bbI(T_1:T_2\mid S) \textrm{ (by \Cref{rho-cond})}\\
&\le \frac{1}{2}(\rho(T_1)+\rho(T_1'))+\frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)) \textrm{ (by \Cref{rho-cond-sym})}\\
&\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_2]+d[Y_3;Y_4]) + \frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)). \textrm{ (by \Cref{rho-sums-sym})}
&\le \rho(T_1|S) + \frac{1}{2}\bbI(T_1:T_2\mid S) \\
&\le \frac{1}{2}(\rho(T_1)+\rho(T_1'))+\frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)) \\
&\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_2]+d[Y_3;Y_4]) + \frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)).
\end{align*}
by \Cref{rho-cond}, \Cref{rho-cond-sym}, \Cref{rho-sums-sym} respectively.
On the other hand, observe that
\begin{align*}
\rho(T_1|T_2,S)
&=\rho(Y_1+Y_2|T_2,T_2') \textrm{ (by \Cref{rho-cond-relabeled})}\\
&\le \frac{1}{2}(\rho(Y_1|T_2)+\rho(Y_2|T_2'))+\frac{1}{2}(d[Y_1|T_2;Y_2|T_2']) \textrm{ (by \Cref{rho-sums-sym})}\\
&\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_3]+d[Y_2;Y_4]) + \frac{1}{2}(d[Y_1|T_2;Y_2|T_2']). \textrm{ (by \Cref{rho-cond-sym})}.
&=\rho(Y_1+Y_2|T_2,T_2') \\
&\le \frac{1}{2}(\rho(Y_1|T_2)+\rho(Y_2|T_2'))+\frac{1}{2}(d[Y_1|T_2;Y_2|T_2']) \\
&\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_3]+d[Y_2;Y_4]) + \frac{1}{2}(d[Y_1|T_2;Y_2|T_2']).
\end{align*}
by \Cref{rho-cond-relabeled}, \Cref{rho-sums-sym}, \Cref{rho-cond-sym} respectively.
By replacing $(Y_1,Y_2,Y_3,Y_4)$ with $(Y_1,Y_3,Y_2,Y_4)$ in the above inequalities, one has
$$\rho(T_2|T_1,S) \le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_3]+d[Y_2;Y_4]) + \frac{1}{2}(d[T_2;T_2']+\bbI(T_1:T_2\mid S))$$
and
Expand Down

0 comments on commit 30d2b36

Please sign in to comment.