Skip to content

Commit

Permalink
a start on sub_condMultiDistance_le
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Aug 19, 2024
1 parent 95ddf6d commit 8964acb
Showing 1 changed file with 16 additions and 1 deletion.
17 changes: 16 additions & 1 deletion PFR/MultiTauFunctional.lean
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,22 @@ lemma sub_multiDistance_le {G Ω₀ : Type u} [MeasureableFinGroup G] [hΩ₀: M

/-- If $(X_i)_{1 \leq i \leq m}$ is a $\tau$-minimizer, and $k := D[(X_i)_{1 \leq i \leq m}]$, then for any other tuples $(X'_i)_{1 \leq i \leq m}$ and $(Y_i)_{1 \leq i \leq m}$ with the $X'_i$ $G$-valued, one has
$$ k - D[(X'_i)_{1 \leq i \leq m} | (Y_i)_{1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i|Y_i].$$ -/
lemma sub_condMultiDistance_le {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.m → Type u) (hΩ : ∀ i, MeasureSpace (Ω i)) (X : ∀ i, Ω i → G) (hmin : multiTauMinimizes p Ω hΩ X) (Ω' : Fin p.m → Type u) (hΩ' : ∀ i, MeasureSpace (Ω' i)) (hf: ∀ i, IsFiniteMeasure (hΩ' i).volume) (X' : ∀ i, Ω' i → G) {S : Type u} [MeasurableSpace S] (Y : ∀ i, Ω' i → S) : D[X; hΩ] - D[X'|Y; hΩ'] ≤ p.η * ∑ i, d[X i ; (hΩ i).volume # X' i | Y i; (hΩ' i).volume ] := by sorry
lemma sub_condMultiDistance_le {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.m → Type u) (hΩ : ∀ i, MeasureSpace (Ω i)) (X : ∀ i, Ω i → G) (hmin : multiTauMinimizes p Ω hΩ X) (Ω' : Fin p.m → Type u) (hΩ' : ∀ i, MeasureSpace (Ω' i)) (hf: ∀ i, IsFiniteMeasure (hΩ' i).volume) (X' : ∀ i, Ω' i → G) {S : Type u} [MeasurableSpace S] (Y : ∀ i, Ω' i → S) : D[X; hΩ] - D[X'|Y; hΩ'] ≤ p.η * ∑ i, d[X i ; (hΩ i).volume # X' i | Y i; (hΩ' i).volume ] := by
set μ := fun ω: Fin p.m → S ↦ ∏ i : Fin p.m, (ℙ (Y i ⁻¹' {ω i})).toReal
have total : ∑' (ω : Fin p.m → S), μ ω = 1 := by
sorry
calc
_ = ∑' (ω: Fin p.m → S), μ ω * D[X; hΩ] - ∑' (ω: Fin p.m → S), μ ω * D[X' ; fun i ↦ MeasureSpace.mk ℙ[|Y i ⁻¹' {ω i}]] := by
congr
rw [tsum_mul_right, total, one_mul]
_ = ∑' (ω: Fin p.m → S), μ ω * (D[X; hΩ] - D[X' ; fun i ↦ MeasureSpace.mk ℙ[|Y i ⁻¹' {ω i}]]) := by
rw [<-tsum_sub]
. apply tsum_congr
intro ω
exact (mul_sub_left_distrib _ _ _).symm
. sorry
sorry
_ ≤ _ := by sorry

/-- With the notation of the previous lemma, we have
\begin{equation}\label{5.3-conv}
Expand Down

0 comments on commit 8964acb

Please sign in to comment.