Skip to content

Commit

Permalink
Blueprint of first estimate
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Nov 16, 2023
1 parent 59160fb commit ba1352e
Show file tree
Hide file tree
Showing 4 changed files with 95 additions and 2 deletions.
5 changes: 5 additions & 0 deletions PFR/first-estimate.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,8 @@ Assumptions (need to be placed explicitly in the file):

/-- We have $I_1 \leq 2 \eta k$ -/
lemma first_estimate : 0 = 1 := by sorry


/-- H[X_1+X_2+\tilde X_1+\tilde X_2] \le \tfrac{1}{2} H[X_1]+\tfrac{1}{2} H[X_2] + (2 + \eta) k - I_1.
-/
lemma ent_ofsum_le : 0 = 1 := by sorry
17 changes: 17 additions & 0 deletions PFR/ruzsa_distance.lean
Original file line number Diff line number Diff line change
Expand Up @@ -86,3 +86,20 @@ lemma ent_bsg : 0 = 1 := by sorry


end Balog_Szemeredi_Gowers


/-- Suppose that $(X, Z)$ and $(Y, W)$ are random variables, where $X, Y$ take values in an abelian group. Then
$$ d[X | Z;Y | W] \leq d[X; Y] + \tfrac{1}{2} I[X : Z] + \tfrac{1}{2} I[Y : W].$$
-/
lemma condDist_le : 0 = 1 := by sorry


/-- Let $X, Y, Z$ be random variables taking values in some abelian group, and with $Y, Z$ independent. Then we have
$$ d[X; Y + Z] -d[X; Y] \leq \tfrac{1}{2} (H[Y+Z] - H[Y]) $$
$$ = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} H[Z] - \tfrac{1}{4} H[Y]$$
and
$$
d[X;Y|Y+Z] - d[X;Y] \leq \tfrac{1}{2} \bigl(H[Y+Z] - H[Z]\bigr) $$
= \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} H[Y] - \tfrac{1}{4} H[Z].
-/
lemma condDist_le' : 0 = 1 := by sorry
42 changes: 42 additions & 0 deletions blueprint/src/chapter/distance.tex
Original file line number Diff line number Diff line change
Expand Up @@ -258,3 +258,45 @@ \chapter{Ruzsa calculus}
and similarly for $\bbH[B_2 | Z]$, we see that~\eqref{lhs-to-bound} is bounded by
$3I[A:B] + 2H[Z]-H[A]-H[B]$ as claimed.
\end{proof}


\begin{lemma}\label{cond-dist-fact}
\uses{cond-ruz-dist, information-def}
\lean{condDist_le}
Suppose that $(X, Z)$ and $(Y, W)$ are random variables, where $X, Y$ take values in an abelian group. Then
\[ d[X | Z;Y | W] \leq d[X; Y] + \tfrac{1}{2} I[X : Z] + \tfrac{1}{2} I[Y : W].\]
\end{lemma}

\begin{proof}
\uses{cond-dist-alt, independent-exist, cond-reduce}
Using Lemma \ref{cond-dist-alt} and Lemma \ref{independent-exist}, if $(X',Z'), (Y',W')$ are independent copies of the variables $(X,Z)$, $(Y,W)$, we have
\begin{align*}
d[X | Z; Y | W]&= H[X'-Y'|Z',W'] - \tfrac{1}{2} H[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\
&\le H[X'-Y']- \tfrac{1}{2} H[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\
&= d[X';Y'] + \tfrac{1}{2} I[X' : Z'] + \tfrac{1}{2} I[Y' : W'].
\end{align*}
Here, in the middle step we used Lemma \ref{cond-reduce}, and in the last step we used Definition \ref{ruz-dist-def} and Definition \ref{information-def}.
\end{proof}

\begin{lemma}\label{first-useful}
\uses{independent-def, ruz-dist-def, cond-dist-def, entropy-def, conditional-entropy-def}
\lean{condDist_le'}
Let $X, Y, Z$ be random variables taking values in some abelian group, and with $Y, Z$ independent. Then we have
\begin{align}\nonumber d[X; Y + Z] -d[X; Y] & \leq \tfrac{1}{2} (H[Y+Z] - H[Y]) \\ & = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} H[Z] - \tfrac{1}{4} H[Y]. \label{lem51-a} \end{align}
and
\begin{align}\nonumber
d[X;Y|Y+Z] - d[X;Y] & \leq \tfrac{1}{2} \bigl(H[Y+Z] - H[Z]\bigr) \\ & = \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} H[Y] - \tfrac{1}{4} H[Z].
\label{ruzsa-3}
\end{align}
\end{lemma}

\begin{proof}
\uses{ruz-copy, ruz-lean, independent-exist, kv, ruz-indep, relabeled-entropy, cond-dist-fact}
We first prove~\eqref{lem51-a}. We may assume (taking an independent copy, using Lemma \ref{independent-exist} and Lemma \ref{ruz-copy}, \ref{ruz-ent}) that $X$ is independent of $Y, Z$. Then we have
\begin{align*} d[X;Y+Z] & - d[X;Y] \\ & = H[X + Y + Z] - H[X+Y] - \tfrac{1}{2}H[Y + Z] + \tfrac{1}{2} H[Y].\end{align*}
Combining this with Lemma \ref{kv} gives the required bound. The second form of the result is immediate Lemma \ref{ruz-indep}.

Turning to~\eqref{ruzsa-3}, we have from Definition \ref{information-def} and Lemma \ref{relabeled-entropy}
\begin{align*} I[Y : Y+Z] & = H[Y] + H[Y + Z] - H[Y, Y + Z] \\ & = H[Y] + H[Y + Z] - H[Y, Z] = H[Y + Z] - H[Z],\end{align*}
and so~\eqref{ruzsa-3} is a consequence of Lemma \ref{cond-dist-fact}. Once again the second form of the result is immediate from Lemma \ref{ruz-indep}.
\end{proof}
33 changes: 31 additions & 2 deletions blueprint/src/chapter/pfr-entropy.tex
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ \subsection{First estimate}
\lean{first-estimate} We have $I_1 \leq 2 \eta k$.
\end{lemma}

\begin{proof}\uses{cor-fibre, distance-lower, cor-distance-lower} From Corollary \ref{cor-fibre} we have
\begin{proof}\uses{cor-fibre, distance-lower, cor-distance-lower, first-useful} From Corollary \ref{cor-fibre} we have
\begin{align*}
& d[X_1+\tilde X_2;X_2+\tilde X_1] + d[X_1|X_1+\tilde X_2; X_2|X_2+\tilde X_1] \\
&\quad + I[ X_1+ X_2 : \tilde X_1 + X_2 \,|\, X_1 + X_2 + \tilde X_1 + \tilde X_2 ] = 2k.
Expand All @@ -103,9 +103,38 @@ \subsection{First estimate}
&\qquad \qquad +(d[X_1^0;X_1|X_1+\tilde X_2]-d[X_1^0;X_1]) \nonumber \\ & \qquad \qquad \qquad \qquad +(d\dist[X_2^0; X_2|X_2+\tilde X_1]-d[X_2^0;X_2]) \leq 2k.
\label{suff-for-first-est}
\end{align}
...

By Lemma \ref{first-useful} (and recalling that $k$ is defined to be $d[X_1;X_2]$) we have
\[ d[X^0_1; X_1+\tilde X_2] - d[X^0_1; X_1] \leq \tfrac{1}{2} k + \tfrac{1}{4} H[X_2] - \tfrac{1}{4} H[X_1],\] \[ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] \leq \tfrac{1}{2} k + \tfrac{1}{4} H[X_1] - \tfrac{1}{4} H[X_2],\]
\begin{equation} d[X_1^0;X_1|X_1+\tilde X_2] - \dist[X_1^0;X_1] \leq \tfrac{1}{2} k + \tfrac{1}{4} H[X_1] - \tfrac{1}{4} H[X_2] \label{second-dist1}
\end{equation}
and
\begin{equation}
\label{second-dist2}
d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] \leq \tfrac{1}{2}k + \tfrac{1}{4} H[X_2] - \tfrac{1}{4} H[X_1].
\end{equation}
Adding all these inequalities, we obtain~\eqref{suff-for-first-est}.
\end{proof}

\begin{lemma}\label{foursum-bound}
\uses{entropy-def}
\lean{ent_ofsum_le}
With the same notation, we have
\begin{equation}
\label{HS-bound}
H[X_1+X_2+\tilde X_1+\tilde X_2] \le \tfrac{1}{2} H[X_1]+\tfrac{1}{2} H[X_2] + (2 + \eta) k - I_1.
\end{equation}
\end{lemma}

\begin{proof}\uses{first-estimate, ruz-indep}
Subtracting~\eqref{second-tc2} from~\eqref{second-main}, and combining the resulting inequality with~\eqref{second-dist1} and~\eqref{second-dist2} (Note: these should all be extracted as separate lemmas) gives the bound
\[
\dist{X_1+\tilde X_2}{X_2+\tilde X_1} \le (1 + \eta) k - I_1,
\]
and the claim follows from Lemma \ref{ruz-indep}.
\end{proof}


\subsection{Second estimate}

...
Expand Down

0 comments on commit ba1352e

Please sign in to comment.