Skip to content

Commit

Permalink
add \uses
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Aug 18, 2024
1 parent a19d211 commit e2cb52c
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
10 changes: 5 additions & 5 deletions PFR/TorsionEndgame.lean
Original file line number Diff line number Diff line change
Expand Up @@ -55,16 +55,16 @@ lemma mutual_information_le_t_13 : I[ Z1 : Z3 | W] ≤ 4 * (p.m)^2 * p.η * k :=
lemma mutual_information_le_t_23 : I[ Z2 : Z3 | W] ≤ 4 * (p.m)^2 * p.η * k := sorry


/-- We let $\bbH[W] \leq (2m-1)k + \frac1m \sum_{i=1}^m \bbH[X_i]$. -/
/-- We have $\bbH[W] \leq (2m-1)k + \frac1m \sum_{i=1}^m \bbH[X_i]$. -/
lemma entropy_of_W_le : H[W] ≤ (2*p.m - 1) * k + (m:ℝ)⁻¹ * ∑ i, H[X i] := sorry

/-- We let $\bbH[Z_2] \leq (8m^2-16m+1) k + \frac{1}{m} \sum_{i=1}^m \bbH[X_i]$. -/
/-- We have $\bbH[Z_2] \leq (8m^2-16m+1) k + \frac{1}{m} \sum_{i=1}^m \bbH[X_i]$. -/
lemma entropy_of_Z_two_le : H[Z2] ≤ (8 * p.m^2 - 16 * p.m + 1) * k + (m:ℝ)⁻¹ * ∑ i, H[X i] := sorry

/-- We let $\bbI[W : Z_2] \leq 2 (m-1) k$. -/
/-- We have $\bbI[W : Z_2] \leq 2 (m-1) k$. -/
lemma mutual_of_W_Z_two_le : I[W : Z2] ≤ 2 * (p.m-1) * k := sorry

/-- We let $\sum_{i=1}^m d[X_i;Z_2|W] \leq 8(m^3-m^2) k$. -/
/-- We have $\sum_{i=1}^m d[X_i;Z_2|W] \leq 8(m^3-m^2) k$. -/
lemma sum_of_conditional_distance_le : ∑ i, d[ X i # Z2 | W] ≤ 8 * (p.m^3 - p.m^2)*k := sorry


Expand All @@ -79,7 +79,7 @@ $$
-/
lemma dist_of_U_add_le {G: Type*} [MeasureableFinGroup G] {Ω: Type*} [MeasureSpace Ω] (T₁ T₂ T₃ : Ω → G) (hsum: T₁ + T₂ + T₃ = 0) (n:ℕ) {Ω': Fin n → Type*} (hΩ': ∀ i, MeasureSpace (Ω' i)) (Y: ∀ i, (Ω' i) → G) {α:ℝ} (hα: α > 0): ∃ (Ω'':Type*) (hΩ'': MeasureSpace Ω'') (U: Ω'' → G), d[U # U] + α * ∑ i, d[Y i # U] ≤ (2 + α * n / 2) * (I[T₁ : T₂] + I[T₁ : T₃] + I[T₂ : T₃]) + α * ∑ i, d[Y i # T₂] := sorry

/-- We let $k = 0$. -/
/-- We have $k = 0$. -/
lemma k_eq_zero : k = 0 := sorry

end AnalyzeMinimizer
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/torsion.tex
Original file line number Diff line number Diff line change
Expand Up @@ -850,7 +850,7 @@ \section{Wrapping up}
\begin{theorem}[Entropy form of PFR]\label{main-entropy}\lean{dist_of_X_U_H_le}\leanok Suppose that $G$ is a finite abelian group of torsion $m$. Suppose that $X$ is a $G$-valued random variable. Then there exists a subgroup $H \leq G$ such that \[ d[X;U_H] \leq 64 m^3 d[X;X].\]
\end{theorem}

\begin{proof}\uses{k-vanish, ruzsa-triangle, tau-def, multi-zero, eta-def-multi} Set $X^0 := X$. By \Cref{tau-min-exist-multi}, there exists a $\tau$-minimizer $X_{[m]} = (X_i)_{1 \leq i \leq m}$. By \Cref{k-vanish}, we have $D[X_{[m]}]=0$. By \Cref{tau-ref} and the pigeonhole principle, there exists $1 \leq i \leq m$ such that $d[X_i; X] \leq \frac{2}{\eta} d[X;X]$. By \Cref{multi-zero}, we have $d[X_i;U_H]=0$ for some subgroup $H \leq G$, hence by \Cref{ruzsa-triangle} we have $d[U_H; X] \leq \frac{2}{\eta} d[X;X]$. The claim then follows from \Cref{eta-def-multi}.
\begin{proof}\uses{k-vanish, ruzsa-triangle, tau-def, multi-zero, eta-def-multi, tau-ref} Set $X^0 := X$. By \Cref{tau-min-exist-multi}, there exists a $\tau$-minimizer $X_{[m]} = (X_i)_{1 \leq i \leq m}$. By \Cref{k-vanish}, we have $D[X_{[m]}]=0$. By \Cref{tau-ref} and the pigeonhole principle, there exists $1 \leq i \leq m$ such that $d[X_i; X] \leq \frac{2}{\eta} d[X;X]$. By \Cref{multi-zero}, we have $d[X_i;U_H]=0$ for some subgroup $H \leq G$, hence by \Cref{ruzsa-triangle} we have $d[U_H; X] \leq \frac{2}{\eta} d[X;X]$. The claim then follows from \Cref{eta-def-multi}.
\end{proof}

\begin{lemma}\label{pfr_aux_torsion}\lean{torsion_PFR_conjecture_aux}\leanok Suppose that $G$ is a finite abelian group of torsion $m$. If $A \subset G$ is non-empty and
Expand Down

0 comments on commit e2cb52c

Please sign in to comment.