Skip to content

thecrabsterchief/mersenne-twister

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mersenne Twister

Abstract

Mersenne Twister (MT) is one of the most widely used general-purpose pseudorandom number generator (PRNG). Its name derives from the fact that its period length is chosen to be a Mersenne prime.

The most commonly used version of the MT algorithm is based on the Mersenne prime $2^{19937} - 1$ (aka MT19937). The standard implementation of MT19937 uses a $32$-bit word length. There is also another implementation (variants) that uses a $64$-bit word length (aka MT19937-64).

In this project, we will reimplement MT19937 algorithm using C/C++ (comparing correctness with C++ built-in functions: std::mt19937, std::mt19937_64) Then we will suggest some methods to attack Mersenne Twister (included C/C++ or Python scripts).

IMPORTANT: Mersenne Twister is not cryptographically secure.

Algorithm Overview

In this section, we will recall three main parts in MT algorithm.

1. Initialization

The state needed for a Mersenne Twister implementation is an array of $n$ values of $w$ bits each. To initialize the array, a $w$-bit seed value is used to supply $x_{0}$ through $x_{n-1}$ by following algorithm

$$ \begin{cases} x_{0} &= seed \\ x_{i} &= f \times \left(x_{i-1} (x_{i-1} \gg (w - 2)) \right) + i \end{cases} \qquad \forall i=\overline{1,n}. $$

2. Twisting

The MT algorithm generates a sequence of word vectors, which are considered to be uniform pseudorandom integers between $0$ and $2^{w} - 1$. The algorithm is based on the following linear recurrence

$$ x_{k+n} = x_{k+m} \oplus \left(x_{k}^{u} \vert x_{k+1}^{l}\right)A \qquad \forall k=0,1,2,\cdots $$

We have several constants:

  • An integer $n$: the degree of the recurrence.
  • $x_{k}^{u}$: the upper $w - r$ bits of $x_{k}$.
  • $x_{k+1}^{l}$: the lower $r$ bits of $x_{k+1}$.
  • $x_{k}^{u} \vert x_{k+1}^{l}$: is just concatenation.
  • $A$: is a chosen matrix so that multiplication by $A$ is very fast:

$$ A = \begin{bmatrix} & &1 & & & \\ & & &1 & & \\ &\text{} &\text{} &\text{} &\ddots &\text{} \\ &\text{} &\text{} &\text{} &\text{} &1 \\ &a_{w-1} &a_{w-2} &a_{w-3} &\cdots &a_{0} \end{bmatrix} $$

then the calculation of $\mathbf{x}A$ can be done using only bit operations:

$$ \mathbf{x}A = \begin{cases} \mathbf{x} \gg 1 \quad &\text{ if } x_{0} = 0 \\ \left(\mathbf{x} \gg 1\right) \oplus \mathbf{a} \quad &\text{ if } x_{0} = 1 \end{cases}, $$

where $\mathbf{a} = \left(a_{w-1}, a_{w-2}, \cdots, a_{0}\right)$ and $\mathbf{x} = \left(x_{w-1}, x_{w-2}, \cdots, x_{0}\right)$.

3. Tempering

The tempering operation to tamper a state register to the produced $32$-bit output. For each state value $\mathbf{x}$, we calculate the $32$-bit output $\mathbf{y}$ by following steps:

$$ \begin{align*} \mathbf{y} &= \mathbf{x} \oplus (\mathbf{x} \gg u) \\ \mathbf{y} &= \mathbf{x} \oplus ((\mathbf{x} \ll s) \text{ AND } \mathbf{b}) \\ \mathbf{y} &= \mathbf{x} \oplus ((\mathbf{x} \ll t) \text{ AND } \mathbf{c}) \\ \mathbf{y} &= \mathbf{x} \oplus (\mathbf{x} \gg l) \\ \end{align*} $$

where $l, s, t$ and $u$ are integers, $\mathbf{b}$ and $\mathbf{c}$ are suitable bitmasks of word size.

IMPORTANT: Tempering step is reversible.

Implement

Some attacks

Update latter...

License