Skip to content

thiagoprocaci/experts-semantic-analysis

Repository files navigation

Project experts-semantic-analysis

Summary

This project is part of a scientific research. We are interested in knowing how to find experts in online community. You can find here the analysis of the paper "Finding Topical Experts in Question & Answer Communities" published at "The 16th IEEE International Conference on Advanced Learning Technologies - ICALT 2016" (http://ieeexplore.ieee.org/document/7757009/). In other words, you will find here everything you need to reproduce this research.

If you use anything related to this research, please cite:

@inproceedings{topical-experts-2016,

  title={Finding Topical Experts in Question \& Answer Communities},

  author={Procaci, Thiago B and Nunes, Bernardo Pereira and Nurmikko-Fuller, Terhi and Siqueira, Sean WM},

  booktitle={Advanced Learning Technologies (ICALT), 2016 IEEE 16th International Conference on},

  pages={407--411},

  year={2016},

  organization={IEEE}
}

Setup the environment

Loading data into MySQL

Comments about the database tables

The names of the tables were written in Portuguese. We translated the names in order to help you to understand.

Table name Translation (english)
usuario user
pergunta question
resposta answer
comentariopergunta comments on question
comentarioresposta comments on answer
forum forum
anotacoes annotations
entidades entities
tag tag
perguntatag question tag

We also translated some important table fields:

Field name Translation (english)
id id
reputacao reputation
nome name
titulo title
texto text
usuarioID user id
forumID forum id
perguntaID question id
respostaID answer id
tagID tag id
dataCriacao creation date
votosPositivos number of votes up
votosNegativos number of votes down
numeroVisualizacao number of visualizations
tipo type
titulo_pergunta Question title
texto_pergunta Question text
texto_resposta Answer text
comentario_pergunta Comment on question text
comentario_resposta Comment on answer text

Analysis

To build each analysis, follow the instructions:

TABLE I. OVERVIEW OF THE BQA REPUTATION SCORE

  • Go to folder table-I-reputation
  • Run reputation.sql
  • Export sql data to csv file (like reputation.csv)
  • Run table-1-reputation.R
  • The results should look like:
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 17.0 101.0 193.5 136.0 16660.0

TABLE II and III. Correlation (Spearman and Kendall)

  • Go to folder table-II-III-correlation
  • Run correlation.sql
  • Export sql data to csv file (like correlation.csv)
  • Run correlation.R
  • The results should look like:
attribute method correlation p-value valid desc
QUESTIONS "spearman" "0.190391450769118" "0.185379772049513" "No" "weak"
ANSWERS "spearman" "0.765476070024332" "0.0000000000951391018063494" "Yes" "strong"
COMMENTS_ON_QUESTION "spearman" "0.607756034714175" "0.00000285881187179338" "Yes" "moderate"
COMMENTS_ON_ANSWERS "spearman" "0.717891463777467" "0.00000000441627523848938" "Yes" "strong"
attribute method correlation p-value valid desc
QUESTIONS "kendall" "0.136604275184825" "0.172782763180915" "No" "weak"
ANSWERS "kendall" "0.577659514570134" "0.00000000399321886668247" "Yes" "moderate"
COMMENTS_ON_QUESTION "kendall" "0.431902165608286" "0.00000998873197555206" "Yes" "moderate"
COMMENTS_ON_ANSWERS "kendall" "0.521100053348757" "0.00000010271813755125" "Yes" "moderate"

TABLE IV. Users Grouped by Expertise

  • Go to folder table-IV-recommendation
  • Execute all sqls in folder sqls
  • Export sql data to csv data file (like the CSVs in the folder data)
  • Run table-IV.R
  • The results should look like:
entity VOTE_UP_MEAN VOTE_DOWN_MEAN PV EFFECT_SIZE NUMBER_USER
aerobic respiration "5.7714+-4.70" "0.08571+-0.28" "< 0,001" "97%" "14"
amphibians "2.1333+-1.68" "0.1333+-0.35" "< 0,001" "93%" "6"
bacteria "4.6567+-4.34" "0.0469+-0.21" "< 0,001" "98%" "46"
blood "3.0909+-2.07" "0.0000+-0.00" "< 0,001" "93%" "12"
brain "4.2732+-3.49" "0.1183+-0.41" "< 0,001" "98%" "37"
cancer "3.8389+-3.33" "0.02778+-0.22" "< 0,001" "97%" "26"
chromosomes "4.2553+-3.68" "0.1081+-0.31" "< 0,001" "96%" "38"
DNA "4.7837+-4.83" "0.04171+-0.23" "< 0,001" "98%" "46"
enzymes "4.6010+-4.86" "0.0146+-0.12" "< 0,001" "98%" "38"
evolutionary "5.3216+-4.83" "0.0924+-0.36" "< 0,001" "97%" "47"
gene "3.9551+-3.28" "0.04289+-0.26" "< 0,001" "97%" "46"
genetic code "6.0120+-6.97" "0.04217+-0.20" "< 0,001" "99%" "25"
genomes "4.1137+-3.15" "0.04046+-0.24" "< 0,001" "98%" "45"
hormones "4.9606+-4.70" "0.1102+-0.65" "< 0,001" "95%" "26"
humans "4.8293+-4.60" "0.08302+-0.37" "< 0,001" "97%" "50"
muscle "3.2138+-2.98" "0.06207+-0.24" "< 0,001" "96%" "23"
organisms "4.9665+-5.12" "0.09152+-0.33" "< 0,001" "97%" "45"
plants "5.7218+-8.35" "0.06031+-0.37" "< 0,001" "98%" "37"
protein "4.3315+-3.69" "0.04375+-0.25" "< 0,001" "98%" "45"
ribosome "3.7261+-3.62" "0.03043+-0.17" "< 0,001" "96%" "41"
RNA "5.6694+-6.22" "0.04918+-0.25" "< 0,001" "98%" "39"
species "4.3077+-4.47" "0.07835+-0.30" "< 0,001" "98%" "42"
vaccine "5.9744+-5.80" "0.01282+-0.11" "< 0,001" "95%" "11"
Virus "4.4777+-4.52" "0.02077+-0.16" "< 0,001" "97%" "31"

TABLE V. Users Grouped by Expertise - No reputation

  • Go to folder table-V-recommendation
  • Execute all sqls in folder sqls
  • Export sql data to csv data file (like the CSVs in the folder data)
  • Run table-V.R
  • The results should look like:
entity VOTE_UP_MEAN VOTE_DOWN_MEAN PV EFFECT_SIZE NUMBER_USER
aerobic respiration "5.2424+-4.06" "0.06061+-0.24" "< 0,001" "97%" "12"
amphibians "2.2500+-1.69" "0.1250+-0.34" "< 0,001" "94%" "7"
bacteria "4.0720+-3.78" "0.04974+-0.22" "< 0,001" "97%" "47"
blood "2.7200+-2.07" "0.0000+-0.00" "< 0,001" "94%" "12"
brain "4.0494+-3.55" "0.07716+-0.31" "< 0,001" "97%" "42"
cancer "3.6755+-3.25" "0.0266+-0.22" "< 0,001" "97%" "30"
chromosomes "3.6863+-2.75" "0.1025+-0.30" "< 0,001" "95%" "40"
DNA "4.5462+-4.73" "0.0375+-0.22" "< 0,001" "98%" "45"
enzymes "4.1162+-4.41" "0.01695+-0.13" "< 0,001" "98%" "39"
evolutionary "5.1257+-4.54" "0.08461+-0.35" "< 0,001" "97%" "47"
gene "3.7699+-3.20" "0.04084+-0.25" "< 0,001" "97%" "48"
genetic code "5.8121+-6.88" "0.04242+-0.20" "< 0,001" "99%" "24"
genomes "3.7837+-3.02" "0.04436+-0.25" "< 0,001" "97%" "45"
hormones "4.7054+-4.90" "0.1250+-0.57" "< 0,001" "94%" "25"
humans "4.6830+-4.66" "0.06575+-0.30" "< 0,001" "97%" "50"
muscle "3.0855+-2.94" "0.04605+-0.21" "< 0,001" "96%" "24"
organisms "4.6674+-5.04" "0.07296+-0.30" "< 0,001" "97%" "45"
plants "5.5293+-8.37" "0.05455+-0.36" "< 0,001" "98%" "40"
protein "4.1062+-3.60" "0.03443+-0.22" "< 0,001" "97%" "44"
ribosome "3.2035+-3.10" "0.01732+-0.13" "< 0,001" "95%" "41"
RNA "5.1458+-5.94" "0.03836+-0.23" "< 0,001" "98%" "38"
species "4.1569+-4.48" "0.07703+-0.30" "< 0,001" "97%" "44"
vaccine "5.5698+-5.67" "0.01163+-0.11" "< 0,001" "95%" "15"
Virus "4.2332+-4.34" "0.02145+-0.16" "< 0,001" "97%" "33"

TABLE VI. Recommendation Testing

  • Go to folder table-V-recommendation
  • Execute all sqls in folder sql-recommendation and sql-recommendation2
  • Export sql data to csv data file (like the CSVs in the folder recommedation)
  • Run recommedation-test.R
  • The results should look like:
entity "USER_REC" "USER_ANSWERED_QUESTION" "PERCENT" "AVG_ANSWERS" "AVG_VOTE_UP" "AVG_VOTE_DOWN" "PV" "EFFECT_SIZE"
"aerobic respiration" "12" "4" "33%" "2+-0.58" "4+-1.84" "0.00+-0.00" "0.0202" "100%"
"amphibians" "7" "2" "29%" "1+-0.00" "2+-3.54" "0.00+-0.00" "0.6171" "75%"
"bacteria" "47" "40" "85%" "5+-5.60" "4+-3.67" "0.06+-0.18" "< 0,001" "97%"
"blood" "12" "5" "42%" "1+-0.89" "4+-2.98" "0.00+-0.00" "0.0254" "90%"
"brain" "42" "34" "81%" "3+-2.72" "4+-2.96" "0.05+-0.18" "< 0,001" "98%"
"cancer" "30" "22" "73%" "2+-1.37" "4+-2.50" "0.00+-0.00" "< 0,001" "100%"
"chromosomes" "40" "33" "82%" "2+-2.10" "4+-3.59" "0.06+-0.24" "< 0,001" "100%"
"dna" "45" "44" "98%" "7+-7.82" "4+-2.63" "0.03+-0.09" "< 0,001" "100%"
"enzymes" "39" "29" "74%" "3+-3.99" "3+-2.34" "0.01+-0.06" "< 0,001" "98%"
"evolutionary" "47" "44" "94%" "7+-8.97" "5+-3.53" "0.09+-0.19" "< 0,001" "100%"
"gene" "48" "44" "92%" "7+-7.27" "3+-2.00" "0.02+-0.07" "< 0,001" "100%"
"genetic code" "24" "15" "62%" "2+-0.72" "4+-2.26" "0.07+-0.26" "< 0,001" "100%"
"genomes" "45" "36" "80%" "4+-4.15" "4+-3.34" "0.04+-0.17" "< 0,001" "98%"
"hormones" "25" "15" "60%" "3+-2.37" "4+-2.98" "0.00+-0.00" "< 0,001" "97%"
"humans" "50" "50" "100%" "9+- 9.50" "5+-6.52" "0.05+-0.13" "< 0,001" "100%"
"muscle" "24" "13" "54%" "2+-1.50" "4+-2.06" "0.08+-0.28" "< 0,001" "100%"
"organisms" "45" "42" "93%" "5+-5.76" "5+-3.92" "0.09+-0.27" "< 0,001" "100%"
"plants" "40" "38" "95%" "4+-4.49" "4+-3.35" "0.03+-0.10" "< 0,001" "99%"
"protein" "44" "39" "89%" "8+-9.02" "4+-2.42" "0.007+-0.03" "< 0,001" "96%"
"ribosome" "41" "30" "73%" "2+-2.09" "3+-2.16" "0.08+-0.32" "< 0,001" "96%"
"rna" "38" "25" "66%" "3+-3.34" "4+-2.97" "0.05+-0.20" "< 0,001" "100%"
"species" "44" "42" "95%" "6+-5.97" "5+-3.57" "0.12+-0.36" "< 0,001" "98%"
"vaccine" "15" "7" "47%" "1+-0.38" "6+-8.32" "0.00+-0.00" "0.0037" "93%"
"virus" "33" "25" "76%" "3+-2.33" "4+-2.72" "0.00+-0.00" "< 0,001" "98%"

Releases

No releases published

Packages

No packages published

Languages