Releases: thieu1995/pfevaluator
Releases · thieu1995/pfevaluator
v1.1.0
Version 1.1.0
Change models
- Compose all methods with same parameters into a single class
- front: Evaluating all possible of all fronts (No need Reference front)
- Ratio: Metrics Assessing the Number of Pareto Optimal Solutions in the Set
- RNI: ratio_of_non_dominated_individuals
- PDI: pareto_dominance_indicator (not implemented yet)
- Ratio: Metrics Assessing the Number of Pareto Optimal Solutions in the Set
- pfront (Pareto front): Evaluating single Pareto front (No need Reference front)
- Distribution: Metrics Focusing on Distribution of the Solutions
- UD = uniform_distribution
- NDC = number_of_distinct_choices (not implemented yet)
- Distribution: Metrics Focusing on Distribution of the Solutions
- tpfront (True Pareto front): Evaluating Pareto front vs Reference front
- Ratio: Metrics Assessing the Number of Pareto Optimal Solutions in the Set
- ER: error_ratio
- ONVG: overall_non_dominated_vector_generation
- Spread : Metrics Concerning Spread of the Solutions
- MS = maximum_spread
- Closeness: Metrics Measuring the Closeness of the Solutions to the True Pareto Front
- GD: generational_distance
- IGD: inverted_generational_distance
- MPFE: maximum_pareto_front_error
- Distribution: Metrics Focusing on Distribution of the Solutions
- S: spacing
- STE: spacing_to_extend
- Ratio: Metrics Assessing the Number of Pareto Optimal Solutions in the Set
- volume (need both Obtained front and Reference front): I kept this file since it using other library
- HV
- HAR
- front: Evaluating all possible of all fronts (No need Reference front)
Change others
- Examples:
- Add all examples for all metrics
- Add example for multiple metrics called at the same time
- Add Change Log file
- Add README.md file
- Add support-data folder for test case
Version 1.0.0 (First version)
Models
root.py file: contains all need functions such as
- find non-dominated list function
- print_messages
- get_pareto_front_reference_front
- find_reference_front
- get_metrics_by_name
- get_metrics_by_list
- All Metric class will inherit this Root class.
Closeness: Metrics Measuring the Closeness of the Solutions to the True Pareto Front
- GD: generational_distance
- IGD: inverted_generational_distance
- MPFE: maximum_pareto_front_error
Closeness_diversity: Metrics Measuring the Closeness of the Solutions to the True Pareto Front
- HV: hyper_volume (using different library)
- HAR: hyper_area_ratio (using different library)
Distribution: Metrics Focusing on Distribution of the Solutions
- UD: uniform_distribution
- S: spacing
- STE: spacing_to_extend
- NDC: number_of_distinct_choices (not implemented yet)
Ratio: Metrics Assessing the Number of Pareto Optimal Solutions in the Set
- RNI: ratio_of_non_dominated_individuals
- ER: error_ratio
- ONVG: overall_non_dominated_vector_generation
- PDI: pareto_dominance_indicator (not implemented yet)
Spread: Metrics Concerning Spread of the Solutions
- MS: maximum_spread