forked from pmelchior/spender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
103 lines (78 loc) · 3.68 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
dependencies = ['torch', 'os']
from spender import load_model as _load_model
from spender import load_flow_model as _load_flow_model
hub_server = "https://hub.pmelchior.net/"
def _sdss_model(url, **kwargs):
from spender.data.sdss import SDSS
instrument = SDSS()
model = _load_model(url, instrument, **kwargs)
return instrument, model
def _desi_model(url, **kwargs):
from spender.data.desi import DESI
instrument = DESI()
model = _load_model(url, instrument, **kwargs)
return instrument, model
def sdss_I(**kwargs):
"""Spectrum Autoencoder model for the SDSS main galaxy sample.
This model has S=10 latents and a restframe resolution R=5881 for a maximum redshift of z_max=0.5.
See Spender paper I for details:
Melchior et al. (2022): arXiv:2211.07890
"""
url = hub_server + "spender.sdss.paperI-08798cbc.pt"
return _sdss_model(url, **kwargs)
def sdss_I_superres(**kwargs):
"""Spectrum Autoencoder super-resolution model for the SDSS main galaxy sample.
This model has S=8 latents and a restframe resolution R=11762 for a maximum redshift of z_max=0.5.
See Spender paper I (section 4.2) for details:
Melchior et al. (2022): arXiv:2211.07890
"""
url = hub_server + "spender.sdss.paperI.superres-0403266c.pt"
return _sdss_model(url, **kwargs)
def sdss_II(**kwargs):
"""Spectrum Autoencoder model for the SDSS main galaxy sample.
This model has S=6 latents and a restframe resolution R=7000 for a maximum redshift of z_max=0.5.
It has been trained with fidelity, similarity, and consistency losses to provide a redshift-invariant latent space.
See spender papers for details:
Liang at al. (2023): arXiv:2302.02496
Melchior et al. (2022): arXiv:2211.07890
"""
url = hub_server + "spender.sdss.paperII-c273bb69.pt"
return _sdss_model(url, **kwargs)
def desi_edr_galaxy(**kwargs):
"""Spectrum Autoencoder model for the DESI EDR Bright Galaxy Survey sample.
This model has S=6 latents and a restframe resolution R=9780 for a maximum redshift of z_max=0.8.
It has been trained with fidelity, similarity, and consistency losses to provide a redshift-invariant latent space.
See spender papers for details:
Liang at al. (2023b): arXiv:2307.07664
Liang at al. (2023a): arXiv:2302.02496
Melchior et al. (2022): arXiv:2211.07890
"""
url = hub_server + "spender.desi-edr.galaxyae-b9bc8d12.pt"
return _desi_model(url, **kwargs)
def desi_edr_star(**kwargs):
"""Spectrum Autoencoder model for the DESI EDR Milky Way Survey sample.
This model has S=6 latents and a restframe resolution R=7864 for a maximum redshift of z_max=0.005.
It has been trained with fidelity, and similarity but not consistency loss.
See spender papers for details:
Liang at al. (2023b): arXiv:2307.07664
Liang at al. (2023a): arXiv:2302.02496
Melchior et al. (2022): arXiv:2211.07890
"""
url = hub_server + "spender.desi-edr.starae-2e33f4e5.pt"
return _desi_model(url, **kwargs)
def desi_edr_galaxy_flow(**kwargs):
"""Normalizing flow model for the DESI EDR BGS spender latent space.
See spender papers for details:
Liang at al. (2023b): arXiv:2307.07664
"""
url = hub_server + "spender.desi-edr.galaxyflow-b71f8966.pt"
n_latent = 6
return _load_flow_model(url, n_latent, **kwargs)
def desi_edr_star_flow(**kwargs):
"""Normalizing flow model for the DESI EDR MWS spender latent space.
See spender papers for details:
Liang at al. (2023b): arXiv:2307.07664
"""
url = hub_server + "spender.desi-edr.starflow-a6ff6fcf.pt"
n_latent = 6
return _load_flow_model(url, n_latent, **kwargs)