Skip to content

Commit

Permalink
Update tables a bit
Browse files Browse the repository at this point in the history
Signed-off-by: Thomas Gassmann <tgassmann@student.ethz.ch>
  • Loading branch information
thomasgassmann committed Jun 7, 2024
1 parent 695658a commit caeabb5
Showing 1 changed file with 23 additions and 8 deletions.
31 changes: 23 additions & 8 deletions complex-analysis/complex.tex
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,7 @@
\def\E{\mathbb{E}}
\def\K{\mathbb{K}}
\def\dx{\text{ d}x}
\def\dt{\text{ d}t}
\def\Re{\text{Re}}
\def\Im{\text{Im}}

Expand Down Expand Up @@ -622,9 +623,21 @@ \subsubsection{Weitere Integrale}
$\int \frac{1}{x^2+a^2} \dx$ & $\frac{1}{a} \arctan \frac{x}{a}$ \\
$\int \frac{1}{x^2 - a^2} \dx$ & $\frac{1}{2a} \ln\left| \frac{x-a}{x+a} \right|$ \\
$\int \sqrt{a^2 - x^2} \dx $ & $\frac{a^2}{2} \arcsin(\frac{x}{a}) + \frac{x}{2} \sqrt{a^2 - x^2}$ \\
\bottomrule
\end{tabularx}
\end{center}

\subsubsection{Trigonometrische Integrale}

\begin{center}
\begin{tabularx}{\linewidth}{>{\centering\arraybackslash}X>{\centering\arraybackslash}X}
\toprule
$\mathbf{f(x)}$ & $\mathbf{F(x)}$ \\
\midrule
$\int \csc(x) \dx $ & $\ln|\csc(x) + \cot(x)|$ \\
$\int \sec(x) \dx $ & $\ln|\sec(x) + \tan(x)|$ \\
$\int \cot(x) \dx $ & $\ln|\sin(x)|$ \\
$\int x \sin(ax) \dx$ & $-\frac{1}{a} x \cos(ax) + \frac{1}{a^2} \sin(ax)$ \\
\bottomrule
\end{tabularx}
\end{center}
Expand All @@ -638,21 +651,23 @@ \subsubsection{Laplace-Transformationen}
\toprule
$f(t)$ & $\mathcal{L}[f(t)](s)$ \\
\midrule
1 & $\frac{1}{s}, \; s > 0$ \\
$t^n$ & $\frac{n!}{s^{n+1}}, \; s > 0$ \\
$\sin(at)$ & $\frac{a}{s^2 + a^2}, \; s > 0$ \\
$\cos(at)$ & $\frac{s}{s^2 + a^2}, \; s > 0$ \\
$e^{at}$ & $\frac{1}{s-a}, \; s > a$ \\
$e^{at} \sin(bt)$ & $\frac{b}{(s-a)^2 + b^2}, \; s > a$ \\
$e^{at} \cos(bt)$ & $\frac{s-a}{(s-a)^2 + b^2}, \; s > a$ \\
$t^n e^{at}$ & $\frac{n!}{(s-a)^{n+1}}, \; s > a$ \\
1 & $\frac{1}{s}, \; \Re(s) > 0$ \\
$t^n$ & $\frac{n!}{s^{n+1}}, \; \Re(s) > 0$ \\
$\sin(at)$ & $\frac{a}{s^2 + a^2}, \; \Re(s) > 0$ \\
$\cos(at)$ & $\frac{s}{s^2 + a^2}, \; \Re(s) > 0$ \\
$e^{at}$ & $\frac{1}{s-a}, \; \Re(s) > a$ \\
$e^{at} \sin(bt)$ & $\frac{b}{(s-a)^2 + b^2}, \; \Re(s) > a$ \\
$e^{at} \cos(bt)$ & $\frac{s-a}{(s-a)^2 + b^2}, \; \Re(s) > a$ \\
$t^n e^{at}$ & $\frac{n!}{(s-a)^{n+1}}, \; \Re(s) > a$ \\
$a f(t) + b g(t)$ & $a \mathcal{L}[f](s) + b \mathcal{L}[g](s)$ \\
$t f(t)$ & $-\frac{d}{ds} \left( \mathcal{L}[f](s) \right)$ \\
$t^n f(t)$ & $(-1)^n \frac{d^n}{ds^n} \left( \mathcal{L}[f](s) \right)$ \\
$f'(t)$ & $s \mathcal{L}[f](s) - f(0)$ \\
$f''(t)$ & $s^2 \mathcal{L}[f](s) - s f(0) - f'(0)$ \\
$e^{at} f(t)$ & $\mathcal{L}[f(t)](s - a)$ \\
$\int_0^t f(\tau) g(t-\tau) d\tau$ & $\mathcal{L}[f](s) \cdot \mathcal{L}[g](s)$ \\
$\cosh(at)$ & $\frac{s}{s^2 - a^2}, \; \Re(s) > a$\\
$\sinh(at)$ & $\frac{a}{s^2 - a^2}, \; \Re(s) > a$\\
\bottomrule
\end{tabularx}
\end{center}
Expand Down

0 comments on commit caeabb5

Please sign in to comment.