Skip to content

Official code for "On Calibrating Diffusion Probabilistic Models"

Notifications You must be signed in to change notification settings

thudzj/Calibrated-DPMs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

On Calibrating Diffusion Probabilistic Models

The official code for the paper On Calibrating Diffusion Probabilistic Models.


We propose a straightforward method for calibrating diffusion probabilistic models that reduces the values of SM objectives and increases model likelihood lower bounds.

Acknowledgement

The codes are modifed based on the DPM-solver and EDM.

Reproducing CIFAR-10 results on image generation and FID

The command for computing the FID of baseline methods (without calibration):

python main.py --config cifar10.yml \
    --exp=experiments/cifar10 \
    --sample --fid \
    --timesteps=20 \
    --eta 0 --ni \
    --skip_type=logSNR \
    --sample_type=dpm_solver \
    --start_time=1e-4 \
    --dpm_solver_fast -i baseline

The command for computing the FID of our methods (with calibration):

python main.py --config cifar10.yml \
    --exp=experiments/cifar10 \
    --sample --fid \
    --timesteps=20 \
    --eta 0 --ni \
    --skip_type=logSNR \
    --sample_type=dpm_solver \
    --start_time=1e-4 \
    --dpm_solver_fast -i our --score_mean 

Reproducing CelebA results on image generation and FID

The command for computing the FID of baseline methods (without calibration):

python main.py --config celeba.yml \
    --exp=experiments/celeba \
    --sample --fid \
    --timesteps=50 \
    --eta 0 --ni \
    --skip_type=logSNR \
    --sample_type=dpm_solver \
    --start_time=1e-4 \
    --dpm_solver_fast -i baseline

The command for computing the FID of our methods (with calibration):

python main.py --config celeba.yml \
    --exp=experiments/celeba \
    --sample --fid \
    --timesteps=50 \
    --eta 0 --ni \
    --skip_type=logSNR \
    --sample_type=dpm_solver \
    --start_time=1e-4 \
    --dpm_solver_fast -i our --score_mean 

Estimating SDE likelihood

The command for running on CIFAR-10:

python main.py --config cifar10.yml \
    --exp=experiments/cifar10 \
    --sample --eta 0 \
    --ni --start_time=1e-4 \
    -i temp --likelihood sde

The command for running on CelebA:

python main.py --config celeba.yml \
    --exp=experiments/celeba \
    --sample --eta 0 \
    --ni --start_time=1e-4 \
    -i temp --likelihood sde

Estimating the average estimated score with EDM

cd edm/;

# CIFAR-10
python torch.distributed.run --master_port 12315 --nproc_per_node=1 generate.py --outdir=generations/cifar10/temp --seeds=0-49999 --subdirs --method our --network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.pkl

# ImageNet
python torch.distributed.run --master_port 12311 --nproc_per_node=1 generate.py --outdir=generations/imagenet/temp --seeds=0-49999 --subdirs --steps=256 --S_churn=40 --S_min=0.05 --S_max=50 --S_noise=1.003 --method our --network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-imagenet-64x64-cond-adm.pkl

The commands for running on FFHQ and AFHQv2 are similar.

About

Official code for "On Calibrating Diffusion Probabilistic Models"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •