Skip to content

Code release for NeurIPS 2020 paper "Stochastic Normalization"

License

Notifications You must be signed in to change notification settings

thuml/StochNorm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StochNorm

Original implementation for NeurIPS 2020 paper Stochastic Normalization.

[News] 2022/04/27 Please refer to the Transfer Learning Library for a modular implementation.



License

Dependencies

  • python3
  • torch == 1.1.0 (with suitable CUDA and CuDNN version)
  • torchvision == 0.3.0
  • numpy
  • argparse
  • tqdm

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
NIH Chest X-ray https://nihcc.app.box.com/v/ChestXray-NIHCC

Quick Start

python --gpu [gpu_num] --data_path /path/to/dataset --class_num [class_num] --p 0.5 train.py 

Some Results

We re-trained our StochNorm with this code on full 15% train data of CUB-200-2011. Results are shown in the table below.

Sampling Rate Top-1 Acc(%)
15% 50.41
30% 62.09
50% 72.05
100% 79.65

Citation

If you use this code for your research, please consider citing:

@article{kou2020stochastic,
  title={Stochastic Normalization},
  author={Kou, Zhi and You, Kaichao and Long, Mingsheng and Wang, Jianmin},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact

If you have any problem about our code, feel free to contact kz19@mails.tsinghua.edu.cn.

About

Code release for NeurIPS 2020 paper "Stochastic Normalization"

Resources

License

Stars

Watchers

Forks