Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add helper for bridging causal fits #679

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: tune
Title: Tidy Tuning Tools
Version: 1.1.1.9000
Version: 1.1.1.9001
Authors@R: c(
person("Max", "Kuhn", , "max@posit.co", role = c("aut", "cre"),
comment = c(ORCID = "0000-0003-2402-136X")),
Expand All @@ -27,7 +27,7 @@ Imports:
GPfit,
hardhat (>= 1.2.0),
lifecycle (>= 1.0.0),
parsnip (>= 1.0.2),
parsnip (>= 1.1.0.9001),
purrr (>= 1.0.0),
recipes (>= 1.0.4),
rlang (>= 1.0.2),
Expand All @@ -37,7 +37,7 @@ Imports:
tidyselect (>= 1.1.2),
vctrs (>= 0.6.1),
withr,
workflows (>= 1.0.0),
workflows (>= 1.1.3.9001),
yardstick (>= 1.0.0)
Suggests:
C50,
Expand All @@ -50,6 +50,9 @@ Suggests:
testthat (>= 3.0.0),
xgboost,
xml2
Remotes:
tidymodels/parsnip#955,
tidymodels/workflows#199
Config/Needs/website: pkgdown, tidymodels, kknn, doParallel, doFuture,
tidyverse/tidytemplate
Config/testthat/edition: 3
Expand Down
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,7 @@ S3method(vec_ptype2,tune_results.tune_results)
S3method(vec_restore,iteration_results)
S3method(vec_restore,resample_results)
S3method(vec_restore,tune_results)
S3method(weight_propensity,tune_results)
export(.catch_and_log)
export(.catch_and_log_fit)
export(.config_key_from_metrics)
Expand Down Expand Up @@ -295,6 +296,7 @@ importFrom(hardhat,extract_workflow)
importFrom(hardhat,tune)
importFrom(parsnip,get_from_env)
importFrom(parsnip,required_pkgs)
importFrom(parsnip,weight_propensity)
importFrom(purrr,map_int)
importFrom(recipes,all_outcomes)
importFrom(recipes,all_predictors)
Expand Down
143 changes: 143 additions & 0 deletions R/weight_propensity.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
#' Helper for bridging two-stage causal fits
#'
#' @description
#' `weight_propensity()` is a helper function to more easily link the
#' propensity and outcome models in causal workflows. In the case of a
#' single model fit, as with `model_fit`s or `workflow`s, the function
#' is roughly analogous to an `augment()` method that additionally takes in
#' a propensity weighting function. For `tune_results`, the method carries
#' out this same augment-adjacent procedure on the training data underlying
#' the resampling object for each element of the analysis set.
#'
#' @inheritParams parsnip::weight_propensity.model_fit
#'
#' @inherit parsnip::weight_propensity.model_fit return
#'
#' @inherit parsnip::weight_propensity.model_fit references
#'
#' @examplesIf tune:::should_run_examples(suggests = "modeldata")
#' # load needed packages
#' library(modeldata)
#' library(parsnip)
#' library(workflows)
#' library(rsample)
#'
#' library(ggplot2)
#' library(dplyr)
#' library(purrr)
#'
#' # example data: model causal estimate for `Class`
#' two_class_dat <- two_class_dat[1:250,]
#' two_class_dat
#'
#' # see `propensity::wt_ate()` for a more realistic example
#' # of a propensity weighting function
#' silly_wt_fn <- function(.propensity, .exposure = NULL, ...) {
#' .propensity
#' }
#'
#' propensity_wf <- workflow(Class ~ B, logistic_reg())
#' outcome_wf <- workflow(A ~ Class, linear_reg()) %>% add_case_weights(.wts)
#'
#' # single model --------------------------------------------------------------
#' propensity_fit <- fit(propensity_wf, two_class_dat)
#'
#' two_class_weighted <-
#' weight_propensity(propensity_fit, silly_wt_fn, data = two_class_dat)
#'
#' two_class_weighted
#'
#' outcome_fit <- fit(outcome_wf, two_class_weighted)
#'
#' outcome_fit %>% extract_fit_engine() %>% coef()
#'
#' # resampled model -----------------------------------------------------------
#' set.seed(1)
#' boots <- bootstraps(two_class_dat[1:250,], times = 100)
#'
#' res_tm <-
#' # fit the propensity model to resamples
#' fit_resamples(
#' propensity_wf,
#' resamples = boots,
#' # note `extract = identity` rather than `extract`
#' control = control_resamples(extract = identity)
#' ) %>%
#' # determine weights for outcome model based on
#' # propensity model's predictions
#' weight_propensity(silly_wt_fn) %>%
#' # fit outcome workflow using generated `.wts`
#' fit_resamples(
#' outcome_wf,
#' resamples = .,
#' # would usually `extract = tidy` here
#' control = control_resamples(extract = identity)
#' )
#'
#' # extracts contain the properly resampled fitted workflows:
#' collect_extracts(res_tm)
#'
#' # plot the properly resampled distribution of estimates:
#' collect_extracts(res_tm) %>%
#' pull(.extracts) %>%
#' map(extract_fit_engine) %>%
#' map(coef) %>%
#' bind_rows() %>%
#' ggplot() +
#' aes(x = ClassClass2) +
#' geom_histogram()
#'
#' @name weight_propensity
#' @aliases weight_propensity.tune_results
#' @importFrom parsnip weight_propensity
#' @method weight_propensity tune_results
#' @export
weight_propensity.tune_results <- function(object, wt_fn, ...) {
if (rlang::is_missing(wt_fn) || !is.function(wt_fn)) {
cli::cli_abort("{.arg wt_fn} must be a function.")
}

wf_1 <- purrr::pluck(object, ".extracts", 1, ".extracts", 1)
if (!inherits(wf_1, "workflow")) {
cli::cli_abort(
"{.arg object} must have been generated with the \\
{.help [control option](tune::control_grid)} {.code extract = identity}."
)
}

dots <- rlang::list2(...)
if ("data" %in% names(dots)) {
cli::cli_abort(
"The {.cls tune_results} method for {.fn weight_propensity} does not take \\
a {.arg data} argument, but one was supplied."
)
}

for (resample in seq_along(object$splits)) {
object$splits[[resample]] <-
augment_split(
object$splits[[resample]],
object$.extracts[[resample]]$.extracts[[1]],
wt_fn = wt_fn,
...
)
}

tibble::new_tibble(
object[, c("splits", "id")],
!!!attr(object, "rset_info")$att,
class = c(attr(object, "rset_info")$att$class, "rset")
)
}

augment_split <- function(split, workflow, wt_fn, ...) {
split[["data"]]$..id <- seq_along(split[["data"]][[1]])
d <- rsample::analysis(split)
d <- vctrs::vec_slice(d, !duplicated(d$..id))
d <- weight_propensity(workflow, wt_fn, ..., data = d)

split[["data"]][d$..id, ".wts"] <- d$.wts
split[["data"]]$..id <- NULL

split
}
1 change: 1 addition & 0 deletions _pkgdown.yml
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ reference:
- coord_obs_pred
- conf_mat_resampled
- example_ames_knn
- starts_with("weight_propensity")
- title: Developer functions
contents:
- merge.recipe
Expand Down
119 changes: 119 additions & 0 deletions man/weight_propensity.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

42 changes: 42 additions & 0 deletions tests/testthat/_snaps/weight_propensity.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# errors informatively with bad input

Code
weight_propensity(res_fit_resamples_bad, silly_wt_fn)
Condition
Error in `weight_propensity()`:
! `object` must have been generated with the control option (`?tune::control_grid()`) `extract = identity`.

---

Code
weight_propensity(res_fit_resamples)
Condition
Error in `weight_propensity()`:
! `wt_fn` must be a function.

---

Code
weight_propensity(res_fit_resamples, "boop")
Condition
Error in `weight_propensity()`:
! `wt_fn` must be a function.

---

Code
weight_propensity(res_fit_resamples, function(...) {
-1L
})
Condition
Error in `hardhat::importance_weights()`:
! `x` can't contain negative weights.

---

Code
weight_propensity(res_fit_resamples, silly_wt_fn, data = two_class_dat)
Condition
Error in `weight_propensity()`:
! The <tune_results> method for `weight_propensity()` does not take a `data` argument, but one was supplied.

Loading