Double-Double Numerical Integration Implements
.NET 8.0
DoubleDouble
// Gauss-Legendre Integrate 32 Points: sin(t) t=0 to pi
GaussLegendreIntegral.Integrate(
ddouble.Sin,
ddouble.Zero, ddouble.Pi,
n: 32
);
// Gauss-Kronrod Adaptive Integrate 7-15: exp(t) t=1 to 4
GaussKronrodIntegral.AdaptiveIntegrate(
ddouble.Exp,
1, 4,
eps: 1e-25,
order: GaussKronrodOrder.G7K15,
maxdepth: 10
);
// Gauss-Kronrod Adaptive Integrate 32-65: exp(-t^2) t=-inf to +inf
GaussKronrodIntegral.AdaptiveIntegrate(
x => ddouble.Exp(-x * x),
ddouble.NegativeInfinity, ddouble.PositiveInfinity,
eps: 1e-25,
order: GaussKronrodOrder.G32K65,
maxdepth: 10
);
// Gauss-Kronrod Adaptive Integrate 32-65: exp(-t^2) t=-inf to +inf
GaussKronrodIntegral.AdaptiveIntegrate(
x => ddouble.Exp(-x * x),
ddouble.NegativeInfinity, ddouble.PositiveInfinity,
eps: 0, // Auto epsilon
order: GaussKronrodOrder.G32K65,
maxdepth: 10
);
// Romberg Integrate: sqrt(1 - t^2) t=0 to sqrt(2)/2
RombergIntegral.Integrate(
x => ddouble.Sqrt(1 - x * x),
0, ddouble.Sqrt(2) / 2,
level: 20
);