Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Meta Schedule] Feature Extractor & Cost Model #510

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion gallery/how_to/extend_tvm/bring_your_own_datatypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,7 +313,7 @@ def convert_ndarray(dst_dtype, array):
print(str(e).split("\n")[-1])

######################################################################
# When we attempt to run the model, we get a familiar error telling us that more funcions need to be registerd for myfloat.
# When we attempt to run the model, we get a familiar error telling us that more functions need to be registerd for myfloat.
#
# Because this is a neural network, many more operations are required.
# Here, we register all the needed functions:
Expand Down
6 changes: 3 additions & 3 deletions include/tvm/auto_scheduler/cost_model.h
Original file line number Diff line number Diff line change
Expand Up @@ -122,11 +122,11 @@ class RandomModel : public CostModel {
* This class will call functions defined in the python */
class PythonBasedModelNode : public CostModelNode {
public:
/*! \brief Pointer to the update funcion in python */
/*! \brief Pointer to the update function in python */
PackedFunc update_func;
/*! \brief Pointer to the predict funcion in python */
/*! \brief Pointer to the predict function in python */
PackedFunc predict_func;
/*! \brief Pointer to the predict funcion in python */
/*! \brief Pointer to the predict function in python */
PackedFunc predict_stage_func;

void Update(const Array<MeasureInput>& inputs, const Array<MeasureResult>& results) final;
Expand Down
2 changes: 1 addition & 1 deletion include/tvm/auto_scheduler/measure.h
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ class MeasureCallback : public ObjectRef {
* This class will call functions defined in the python */
class PythonBasedMeasureCallbackNode : public MeasureCallbackNode {
public:
/*! \brief Pointer to the callback funcion in python */
/*! \brief Pointer to the callback function in python */
PackedFunc callback_func;

void Callback(const SearchPolicy& policy, const Array<MeasureInput>& inputs,
Expand Down
185 changes: 185 additions & 0 deletions include/tvm/meta_schedule/cost_model.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

#ifndef TVM_META_SCHEDULE_COST_MODEL_H_
#define TVM_META_SCHEDULE_COST_MODEL_H_

#include <tvm/meta_schedule/search_strategy.h>

namespace tvm {
namespace meta_schedule {

class TuneContext;

/*! \brief Cost model. */
class CostModelNode : public runtime::Object {
public:
/*! \brief Virtual destructor. */
virtual ~CostModelNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief Load the cost model from given file location.
* \param file_location The file location.
* \return Whether cost model was loaded successfully.
*/
virtual bool Load(const String& file_location) = 0;

/*!
* \brief Save the cost model to given file location.
* \param file_location The file location.
* \return Whether cost model was saved successfully.
*/
virtual bool Save(const String& file_location) = 0;

/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
*/
virtual void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) = 0;

/*!
* \brief Predict the running results of given measure candidates.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \return The predicted running results.
*/
virtual std::vector<double> Predict(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.CostModel";
TVM_DECLARE_BASE_OBJECT_INFO(CostModelNode, Object);
};

/*! \brief The cost model with customized methods on the python-side. */
class PyCostModelNode : public CostModelNode {
public:
/*!
* \brief Load the cost model from given file location.
* \param file_location The file location.
* \return Whether cost model was loaded successfully.
*/
using FLoad = runtime::TypedPackedFunc<bool(String)>;
/*!
* \brief Save the cost model to given file location.
* \param file_location The file location.
* \return Whether cost model was saved successfully.
*/
using FSave = runtime::TypedPackedFunc<bool(String)>;
/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
* \return Whether cost model was updated successfully.
*/
using FUpdate = runtime::TypedPackedFunc<void(const TuneContext&, const Array<MeasureCandidate>&,
const Array<RunnerResult>&)>;
/*!
* \brief Predict the running results of given measure candidates.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param p_addr The address to save the the estimated running results.
*/
using FPredict = runtime::TypedPackedFunc<void(const TuneContext&, const Array<MeasureCandidate>&,
void* p_addr)>;
/*!
* \brief Get the cost model as string with name.
* \return The string representation of the cost model.
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `Load` function. */
FLoad f_load;
/*! \brief The packed function to the `Save` function. */
FSave f_save;
/*! \brief The packed function to the `Update` function. */
FUpdate f_update;
/*! \brief The packed function to the `Predict` function. */
FPredict f_predict;
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
// `f_load` is not visited
// `f_save` is not visited
// `f_update` is not visited
// `f_predict` is not visited
// `f_as_string` is not visited
}

bool Load(const String& file_location) {
ICHECK(f_load != nullptr) << "PyCostModel's Load method not implemented!";
return f_load(file_location);
}

bool Save(const String& file_location) {
ICHECK(f_save != nullptr) << "PyCostModel's Save method not implemented!";
return f_save(file_location);
}

void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) {
ICHECK(f_update != nullptr) << "PyCostModel's Update method not implemented!";
f_update(tune_context, candidates, results);
}

std::vector<double> Predict(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_predict != nullptr) << "PyCostModel's Predict method not implemented!";
std::vector<double> result(candidates.size(), 0.0);
f_predict(tune_context, candidates, result.data());
return result;
}

static constexpr const char* _type_key = "meta_schedule.PyCostModel";
TVM_DECLARE_FINAL_OBJECT_INFO(PyCostModelNode, CostModelNode);
};

/*!
* \brief Managed reference to CostModelNode
* \sa CostModelNode
*/
class CostModel : public runtime::ObjectRef {
public:
/*!
* \brief Create a feature extractor with customized methods on the python-side.
* \param f_load The packed function of `Load`.
* \param f_save The packed function of `Save`.
* \param f_update The packed function of `Update`.
* \param f_predict The packed function of `Predict`.
* \param f_as_string The packed function of `AsString`.
* \return The feature extractor created.
*/
TVM_DLL static CostModel PyCostModel(PyCostModelNode::FLoad f_load, //
PyCostModelNode::FSave f_save, //
PyCostModelNode::FUpdate f_update, //
PyCostModelNode::FPredict f_predict, //
PyCostModelNode::FAsString f_as_string);
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(CostModel, ObjectRef, CostModelNode);
};

} // namespace meta_schedule
} // namespace tvm

#endif // TVM_META_SCHEDULE_COST_MODEL_H_
109 changes: 109 additions & 0 deletions include/tvm/meta_schedule/feature_extractor.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

zxybazh marked this conversation as resolved.
Show resolved Hide resolved
#ifndef TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_
#define TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_

#include <tvm/meta_schedule/search_strategy.h>

namespace tvm {
namespace meta_schedule {

class TuneContext;

/*! \brief Extractor for features from measure candidates for use in cost model. */
class FeatureExtractorNode : public runtime::Object {
public:
/*! \brief Virtual destructor. */
virtual ~FeatureExtractorNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
virtual Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.FeatureExtractor";
TVM_DECLARE_BASE_OBJECT_INFO(FeatureExtractorNode, Object);
};

/*! \brief The feature extractor with customized methods on the python-side. */
class PyFeatureExtractorNode : public FeatureExtractorNode {
public:
/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
using FExtractFrom = runtime::TypedPackedFunc<Array<tvm::runtime::NDArray>(
const TuneContext& tune_context, const Array<MeasureCandidate>& candidates)>;
/*!
* \brief Get the feature extractor as string with name.
* \return The string of the feature extractor.
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `ExtractFrom` function. */
FExtractFrom f_extract_from;
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
// `f_extract_from` is not visited
// `f_as_string` is not visited
}

Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_extract_from != nullptr) << "PyFeatureExtractor's ExtractFrom method not implemented!";
return f_extract_from(tune_context, candidates);
}

static constexpr const char* _type_key = "meta_schedule.PyFeatureExtractor";
TVM_DECLARE_FINAL_OBJECT_INFO(PyFeatureExtractorNode, FeatureExtractorNode);
};

/*!
* \brief Managed reference to FeatureExtractorNode
* \sa FeatureExtractorNode
*/
class FeatureExtractor : public runtime::ObjectRef {
public:
/*!
* \brief Create a feature extractor with customized methods on the python-side.
* \param f_extract_from The packed function of `ExtractFrom`.
* \param f_as_string The packed function of `AsString`.
* \return The feature extractor created.
*/
TVM_DLL static FeatureExtractor PyFeatureExtractor(
PyFeatureExtractorNode::FExtractFrom f_extract_from, //
PyFeatureExtractorNode::FAsString f_as_string);
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(FeatureExtractor, ObjectRef, FeatureExtractorNode);
};

} // namespace meta_schedule
} // namespace tvm

#endif // TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_
4 changes: 2 additions & 2 deletions include/tvm/meta_schedule/measure_callback.h
Original file line number Diff line number Diff line change
Expand Up @@ -81,9 +81,9 @@ class PyMeasureCallbackNode : public MeasureCallbackNode {
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `Apply` funcion. */
/*! \brief The packed function to the `Apply` function. */
FApply f_apply;
/*! \brief The packed function to the `AsString` funcion. */
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
Expand Down
10 changes: 6 additions & 4 deletions include/tvm/meta_schedule/mutator.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,9 @@ class MutatorNode : public runtime::Object {
void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief The function type of `InitializeWithTuneContext` method.
* \brief Initialize the design space generator with tuning context.
* \param tune_context The tuning context for initialization.
* \note This method is supposed to be called only once before every other method.
*/
virtual void InitializeWithTuneContext(const TuneContext& context) = 0;

Expand Down Expand Up @@ -72,11 +73,11 @@ class PyMutatorNode : public MutatorNode {
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `InitializeWithTuneContext` funcion. */
/*! \brief The packed function to the `InitializeWithTuneContext` function. */
FInitializeWithTuneContext f_initialize_with_tune_context;
/*! \brief The packed function to the `Apply` funcion. */
/*! \brief The packed function to the `Apply` function. */
FApply f_apply;
/*! \brief The packed function to the `AsString` funcion. */
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
Expand Down Expand Up @@ -110,6 +111,7 @@ class Mutator : public runtime::ObjectRef {
* \brief Create a mutator with customized methods on the python-side.
* \param f_initialize_with_tune_context The packed function of `InitializeWithTuneContext`.
* \param f_apply The packed function of `Apply`.
* \param f_as_string The packed function of `AsString`.
* \return The mutator created.
*/
TVM_DLL static Mutator PyMutator(
Expand Down
4 changes: 3 additions & 1 deletion include/tvm/meta_schedule/postproc.h
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,9 @@ class PostprocNode : public runtime::Object {
void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief The function type of `InitializeWithTuneContext` method.
* \brief Initialize the design space generator with tuning context.
* \param tune_context The tuning context for initialization.
* \note This method is supposed to be called only once before every other method.
*/
virtual void InitializeWithTuneContext(const TuneContext& context) = 0;

Expand Down Expand Up @@ -112,6 +113,7 @@ class Postproc : public runtime::ObjectRef {
* \brief Create a postprocessor with customized methods on the python-side.
* \param f_initialize_with_tune_context The packed function of `InitializeWithTuneContext`.
* \param f_apply The packed function of `Apply`.
* \param f_as_string The packed function of `AsString`.
* \return The postprocessor created.
*/
TVM_DLL static Postproc PyPostproc(
Expand Down
Loading