About • Install • Terminal • Python • License
Converts an Image to a CSV. This exists because Chorus 3.0 is bat-shit and only shows images for vital metadata.
I am partial towards miniforge, but you can replace these commands with your favorite conda distribution.
Special walkthrough for Windows users since Windows is awful.
curl -O https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Windows-x86_64.exe
start /wait "" Miniforge3-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /D=%UserProfile%\Miniforge3
# Follow the prompts.
Conda does not install all needed packages for Python 3.7 so you need to install the following to get ImageToCSV to work properly.
sudo apt install --yes build-essential libpoppler-cpp-dev pkg-config tesseract-ocr libtesseract-dev
conda create -n imagetocsv pip python=3.11.6
conda activate imagetocsv
conda install -y -c conda-forge clang_osx-64 clangxx_osx-64 poppler==22.11.0 tesseract==5.2.0
pip install imagetocsv
conda create -n imagetocsv pip python=3.11.6
conda activate imagetocsv
conda install -y -c conda-forge gcc_linux-64 gxx_linux-64 poppler==22.11.0 tesseract==5.2.0
pip install imagetocsv
conda create -n imagetocsv pip python=3.11.6
conda activate imagetocsv
conda install -y -c conda-forge poppler==22.11.0 tesseract==5.2.0
pip install imagetocsv
pip install -e ".[dev]"
cd ImageToCSV
pytest -svvv tests
If you have a lot of images to convert, you can preconfigure the index and column names to save time in the hardcoded_options.py file here. Each option will need a format of dict[str, tuple[str, list[str], list[str]]]
aka slug -> (name, indexes, columns).
imagetocsv -p myslug myimage.png
[CSV_PATH] means that it is a stdout (printed on the terminal) if output is not specified.
Usage: imagetocsv [OPTIONS] IMAGE_PATH [CSV_PATH]
Console script for imagetocsv.
Options:
--version Show the version and exit.
-v, --verbose Vebosity level, ex. -vvvvv for debug level logging
-n, --index_name TEXT Index Name for the CSV file
-i, --index TEXT Index for the CSV file
-c, --column_header TEXT Columns for the CSV file
-p, --preconfigured-options TEXT
--help Show this message and exit.
# Convert an image to a CSV
imagetocsv myimage.png output.csv
# Convert an image to a stdout (printed on the terminal) TSV
imagetocsv myimage.png
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 598150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
1 | 237987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
2 | 228000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
3 | 222453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
4 | 212474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
5 | 55885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
6 | 34745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
7 | 22496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
8 | 17409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
9 | 2663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
10 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
11 | 14736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
12 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
13 | 0 | 0.00% | 0.00% | ||||
14 | 8888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
15 | 1806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
16 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
17 | 6906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
# Used for Chorus 3.0 to auto header and index names.
imagetocsv -p chorus myimage.png
Population | Events | % Parent | % Total | FSC-A Median | FSC-A %rCV | SSC-A Median | SSC-A %rCV |
---|---|---|---|---|---|---|---|
All Events | 598,150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
Lymphocytes | 237,987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
Single cells... | 228,000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
Single cells... | 222,453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
Live/Dead | 212,474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
CD19+ Dump- | 55,885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
Naive gD+ | 34,745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
Memory IgD- | 22,496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
IgD- KO- | 17,409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
P15-1 | 2,663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
P15-2 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
P15-3 | 14,736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
P15-4 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
MARIO WT++ | 0 | 0.00% | 0.00% | ||||
P14-1 | 8,888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
P14-2 | 1,806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
P14-3 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
P14-4 | 6,906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
Adding Index Name, Index, and Column Header. They need to match the deminsions of the matrix! This may be more trouble than its worth so, this is just to show you can do it. No pressure.
imagetocsv myimage.jpg \
--index_name "Population" \
--index "All Events,Lymphocytes,Single cells...,Single cells...,Live/Dead,CD19+ Dump-,Naive gD+,Memory IgD-,IgD- KO-,P15-1,P15-2,P15-3,P15-4,MARIO WT++,P14-1,P14-2,P14-3,P14-4" \
--column_header "Events,%Parent,%Total,FSC-A Median,FSC-A %rCV,SSC-A Median,SSC-A %rCV"
Population | Events | % Parent | % Total | FSC-A Median | FSC-A %rCV | SSC-A Median | SSC-A %rCV |
---|---|---|---|---|---|---|---|
All Events | 598,150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
Lymphocytes | 237,987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
Single cells... | 228,000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
Single cells... | 222,453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
Live/Dead | 212,474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
CD19+ Dump- | 55,885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
Naive gD+ | 34,745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
Memory IgD- | 22,496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
IgD- KO- | 17,409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
P15-1 | 2,663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
P15-2 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
P15-3 | 14,736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
P15-4 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
MARIO WT++ | 0 | 0.00% | 0.00% | ||||
P14-1 | 8,888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
P14-2 | 1,806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
P14-3 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
P14-4 | 6,906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example
df = imagetocsv(no_grid_example)
print(df.to_markdown())
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 598150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
1 | 237987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
2 | 228000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
3 | 222453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
4 | 212474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
5 | 55885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
6 | 34745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
7 | 22496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
8 | 17409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
9 | 2663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
10 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
11 | 14736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
12 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
13 | 0 | 0.00% | 0.00% | ||||
14 | 8888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
15 | 1806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
16 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
17 | 6906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example
df = imagetocsv(
no_grid_example,
index_name="Population",
index=[
"All Events",
"Lymphocytes",
"Single cells...",
"Single cells...",
"Live/Dead",
"CD19+ Dump-",
"Naive gD+",
"Memory IgD-",
"IgD- KO-",
"P15-1",
"P15-2",
"P15-3",
"P15-4",
"MARIO WT++",
"P14-1",
"P14-2",
"P14-3",
"P14-4",
],
column_header=["Events", "% Parent", "% Total", "FSC-A Median", "FSC-A %rCV", "SSC-A Median", "SSC-A %rCV"],
)
print(df.to_markdown())
Population | Events | % Parent | % Total | FSC-A Median | FSC-A %rCV | SSC-A Median | SSC-A %rCV |
---|---|---|---|---|---|---|---|
All Events | 598,150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
Lymphocytes | 237,987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
Single cells... | 228,000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
Single cells... | 222,453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
Live/Dead | 212,474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
CD19+ Dump- | 55,885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
Naive gD+ | 34,745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
Memory IgD- | 22,496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
IgD- KO- | 17,409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
P15-1 | 2,663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
P15-2 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
P15-3 | 14,736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
P15-4 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
MARIO WT++ | 0 | 0.00% | 0.00% | ||||
P14-1 | 8,888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
P14-2 | 1,806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
P14-3 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
P14-4 | 6,906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
- Copyright © Troy M. Sincomb