You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Simple Implementation of Network Intrusion Detection System. KddCup'99 Data set is used for this project. kdd_cup_10_percent is used for training test. correct set is used for test. PCA is used for dimension reduction. SVM and KNN supervised algorithms are the classification algorithms of project. Accuracy : %83.5 For SVM , %80 For KNN
[Anomaly detection] refers to the process of identifying patterns in data that do not conform to expected behavior. This project aims to develop a machine learning model to predict and identify potential attacks in IoT networks, thus helping to secure these networks from malicious activities.