The GOLang implementation of NeuroEvolution of Augmented Topologies (NEAT) method to evolve and train Artificial Neural Networks without error back propagation
-
Updated
Dec 9, 2024 - Go
The GOLang implementation of NeuroEvolution of Augmented Topologies (NEAT) method to evolve and train Artificial Neural Networks without error back propagation
NEAT (NeuroEvolution of Augmenting Topologies) implemented in Go
This project provides GOLang implementation of Neuro-Evolution of Augmenting Topologies (NEAT) with Novelty Search optimization aimed to solve deceptive tasks with strong local optima
The implementation of evolvable-substrate HyperNEAT algorithm in GO language. ES-HyperNEAT is an extension of the original HyperNEAT method for evolving large-scale artificial neural networks.
Just another NEAT implementation.
NEAT learning to play Flappy Gopher
This library use a genetic algorithm to fit a neural network weights. This is useful when you don't have a dataset to train your neural network, for example when you need an agent to interact with an environment or to learn to play some games.
This is a neuro-evolution of augmenting topologies library. It uses a genetic algorithm to evolve neural networks. This is useful when you don't have a dataset to train your neural network, for example when you need an agent to interact with an environment or to learn to play some games.
I need a better brain, so I code one. EDIT: Turns out this brain is even slower than mine
Add a description, image, and links to the neat topic page so that developers can more easily learn about it.
To associate your repository with the neat topic, visit your repo's landing page and select "manage topics."