🚀 The TUM Traffic Dataset (TUMTraf
) is based on roadside sensor data from the 3 km long Providentia Test Field for Autonomous Driving near Munich in Germany. The dataset includes anonymized and precision-timestamped multi-modal sensor and object data in high resolution, covering a variety of traffic situations. We provide camera and LiDAR frames from overhead gantry bridges with the corresponding objects labeled with 3D bounding boxes and track IDs. The dataset contains the following subsets:
- [DOWNLOAD] TUMTraf A9 Highway Dataset (
TUMTraf-A9
) - [DOWNLOAD] TUMTraf Intersection Dataset (
TUMTraf-I
) - [DOWNLOAD] TUMTraf Event Dataset (
TUMTraf-E
) - [DOWNLOAD] TUMTraf V2X Cooperative Perception Dataset (
TUMTraf-V2X
)
- News
- Release History
- Installation
- Dataset Structure
- Label Visualization
- Data Split
- Point Cloud Registration
- Data Cleaning
- Label Conversion
- Evaluation
- Acknowledgements
- Citation
- License
- Contact
The Development Kit provides a dataset loader for images, point clouds, labels and calibration data. The calibration loader reads the intrinsic and extrinsic calibration information. The projection matrix is then used to visualize the 2D and 3D labels on cameras images.
- 2024/03: Final version of TUMTraf dev-kit released (v1.0.0)
- 2024/02: Accepted paper at CVPR'24 conference: TUMTraf V2X Cooperative Perception Dataset
- 2023/12: Added instance segmentation labels to TUMTraf Intersection Dataset (
TUMTraf-I
) - 2023/11: Finished annotation of TUMTraf V2X Cooperative Perception Dataset
- 2023/09: 🏆 IEEE Best Student Paper Award at the ITSC'23 conference: TUMTraf Intersection Dataset: All You Need for Urban 3D Camera-LiDAR Roadside Perception
- 2022/08: Introduced OpenLABEL annotation format and created converters (dev-kit v0.2.0)
- 2022/04: Accepted paper at IV'22 conference: A9-Dataset: Multi-Sensor Infrastructure-Based Dataset for Mobility Research
- 2022/02: Finished annotation of TUMTraf A9 Highway Dataset using 3D BAT labeling tool
- 2021/12: First release of the dev-kit (v0.1.0)
The TUM Traffic Dataset contains the following releases:
- 2024-XX: Planning to release R06 TUMTraf Accident Dataset (
TUMTraf-A
) - 2024-02: Released R05 TUMTraf Intersection Extended Dataset (
TUMTraf-IE
) - 2024-02: Released R04 TUMTraf V2X Cooperative Perception Dataset (
TUMTraf-V2X
) - 2023-12: Released R03 TUMTraf Event Dataset (
TUMTraf-E
) - 2023-06: Released R02 TUMTraf Intersection Dataset (
TUMTraf-I
) - 2022-07: Released R01 TUMTraf A9 Highway Extended Dataset (
TUMTraf-A9E
) - 2022-04: Released R00 TUMTraf A9 Highway Dataset (
TUMTraf-A9
)
Create an anaconda environment:
conda create --name tum-traffic-dataset-dev-kit python=3.9
conda activate tum-traffic-dataset-dev-kit
Install the following dependencies:
conda install -c conda-forge fvcore
conda install -c conda-forge iopath
In case, you are using NVIDIA CUDA <11.6:
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar -xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
Install PyTorch3D:
pip3 install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py39_cu113_pyt1121/download.html
Further information is available here: https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md
Install requirements:
pip3 install -r requirements.txt
pip3 install --upgrade git+https://github.com/klintan/pypcd.git
Add dev kit's root directory to PYTHONPATH
:
export PYTHONPATH=$PYTHONPATH:/home/<USERNAME>/tum-traffic-dataset-dev-kit/
The TUM Traffic A9 Highway Dataset (TUMTraf-A9
) contains 5 subsets (s00
to s04
) and is structured in the following way:
The first 3 sets tum_traffic_a9_r00_s00
, tum_traffic_a9_r00_s01
and tum_traffic_a9_r00_s02
contain image data (.png
) from roadside cameras with corresponding label files (stored in OpenLABEL .json
format) and calibration data:
├── tum_traffic_a9_dataset_r00_s00
│ ├── _images
│ │ ├── s040_camera_basler_north_16mm
│ │ ├── s040_camera_basler_north_50mm
│ │ ├── s050_camera_basler_south_16mm
│ │ ├── s050_camera_basler_south_50mm
│ ├── _labels
│ │ ├── s040_camera_basler_north_16mm
│ │ ├── s040_camera_basler_north_50mm
│ │ ├── s050_camera_basler_south_16mm
│ │ ├── s050_camera_basler_south_50mm
│ ├── _calibration
│ │ ├── s040_camera_basler_north_16mm.json
│ │ ├── s040_camera_basler_north_50mm.json
│ │ ├── s050_camera_basler_south_16mm.json
│ │ ├── s050_camera_basler_south_50mm.json
The last two sets tum_traffic_a9_r00_s03
, and tum_traffic_a9_r00_s04
contain point cloud data (.pcd
) from roadside LiDARs with corresponding label files (stored in OpenLABEL .json
format) and calibration data:
├── tum_traffic_a9_dataset_r00_s03
│ ├── _points
│ ├── _labels
The extended TUM Traffic A9 Highway Dataset additionally contains 3 subsets (s01
to s03
) and is structured in the following way:
Example: tum_traffic_a9_dataset_r01_s01:
├── tum_traffic_a9_dataset_r01_s03
│ ├── _images
│ │ ├── s040_camera_basler_north_16mm
│ │ ├── s040_camera_basler_north_50mm
│ │ ├── s050_camera_basler_south_16mm
│ │ ├── s050_camera_basler_south_50mm
│ ├── _labels
│ │ ├── s040_camera_basler_north_16mm
│ │ ├── s040_camera_basler_north_50mm
│ │ ├── s050_camera_basler_south_16mm
│ │ ├── s050_camera_basler_south_50mm
│ ├── _calibration
│ │ ├── s040_camera_basler_north_16mm.json
│ │ ├── s040_camera_basler_north_50mm.json
│ │ ├── s050_camera_basler_south_16mm.json
│ │ ├── s050_camera_basler_south_50mm.json
The TUM Traffic Intersection Dataset (TUMTraf-I
) contains 4 subsets (s01
to s04
) and is structured in the following way:
├── tum_traffic_intersection_dataset_r02_s01
│ ├── _images
│ │ ├── s110_camera_basler_south1_8mm
│ │ ├── s110_camera_basler_south2_8mm
│ ├── _labels
│ │ ├── s110_lidar_ouster_south
│ │ ├── s110_lidar_ouster_north
│ ├── _points_clouds
│ │ ├── s110_lidar_ouster_south
│ │ ├── s110_lidar_ouster_north
├── tum_traffic_intersection_dataset_r02_s02
│ ├── ...
├── tum_traffic_intersection_dataset_r02_s03
│ ├── ...
├── tum_traffic_intersection_dataset_r02_s04
│ ├── ...
The TUM Traffic Event Dataset (TUMTraf-E
) contains 1 subsets (s01
to s04
) and is structured in the following way:
├── train
│ ├── _images
│ │ ├── eb
│ │ ├── eb_transformed
│ │ ├── rgb
│ │ ├── rgb_eb_combined
│ ├── _labels
│ │ ├── ...
├── val
│ ├── ...
├── test
│ ├── ...
├── calibration
│ ├── extrinsic
│ ├── intrinsic
The TUM Traffic V2X Cooperative Perception Dataset (TUMTraf-V2X
) contains 10 sequences (s01
to s10
) and is structured in the following way:
├── train
│ ├── _images
│ │ ├── s110_camera_basler_south1_8mm
│ │ ├── s110_camera_basler_south2_8mm
│ │ ├── s110_camera_basler_east_8mm
│ │ ├── s110_camera_basler_north_8mm
│ │ ├── vehicle_camera_basler_16mm
│ ├── _labels_point_clouds
│ │ ├── s110_lidar_ouster_south_and_vehicle_lidar_robosense_registered
│ ├── _points_clouds
│ │ ├── s110_lidar_ouster_south
│ │ ├── s110_lidar_ouster_south_and_vehicle_lidar_robosense_registered
│ │ ├── vehicle_lidar_robosense
├── val
│ ├── ...
├── test
│ ├── ...
The following visualization script can be used to draw the 2D and/or 3D labels on camera frames:
python tum-traffic-dataset-dev-kit/src/visualization/visualize_image_with_3d_boxes.py --camera_id s110_camera_basler_south1_8mm \
--lidar_id s110_lidar_ouster_south \
--input_folder_path_images <IMAGE_FOLDER_PATH> \
--input_folder_path_point_clouds <POINT_CLOUD_FOLDER_PATH> \
--input_folder_path_labels <LABEL_FOLDER_PATH> \
--viz_mode [box2d,mask,box3d,point_cloud,track_history] \
--viz_color_mode [by_category,by_track_id] \
--output_folder_path_visualization <OUTPUT_FOLDER_PATH> \
--detections_coordinate_system_origin [s110_base,s110_lidar_ouster_south] \
--labels_coordinate_system_origin [s110_base,s110_lidar_ouster_south]
Visualization south2 in camera:--viz_mode box3d,point_cloud |
Visualization south1 camera: --vis_mode box2d,box3d,mask,track_history |
---|
The script below draws labels on a LiDAR frame:
python tum-traffic-dataset-dev-kit/src/visualization/visualize_point_cloud_with_3d_boxes.py --input_folder_path_point_clouds <INPUT_FOLDER_PATH_POINT_CLOUDS> \
--input_folder_path_labels <INPUT_FOLDER_PATH_LABELS> \
--save_visualization_results \
--output_folder_path_visualization_results <OUTPUT_FOLDER_PATH_VISUALIZATION_RESULTS> \
--show_hd_map
Bird's Eye View | Side View |
---|---|
The script below splits the dataset into train
and val
:
python tum-traffic-dataset-dev-kit/src/preprocessing/create_train_val_split.py --input_folder_path_dataset <INPUT_FOLDER_PATH_DATASET> \
--input_folder_path_data_split_root <INPUT_FOLDER_PATH_DATA_SPLIT_ROOT>
Example:
python tum-traffic-dataset-dev-kit/src/preprocessing/create_train_val_split.py --input_folder_path_dataset /home/<USERNAME>/tum_traffic_intersection_dataset_r02 \
--input_folder_path_data_split_root <INPUT_FOLDER_PATH_DATA_SPLIT_ROOT>
The following script can be used to register point clouds from two different LiDARs:
python tum-traffic-dataset-dev-kit/src/registration/point_cloud_registration.py --folder_path_point_cloud_source <INPUT_FOLDER_PATH_POINT_CLOUDS_SOURCE> \
--folder_path_point_cloud_target <INPUT_FOLDER_PATH_POINT_CLOUDS_TARGET> \
--save_registered_point_clouds \
--output_folder_path_registered_point_clouds <OUTPUT_FOLDER_PATH_POINT_CLOUDS>
A LiDAR preprocessing module reduces noise in point cloud scans:
python tum-traffic-dataset-dev-kit/src/preprocessing/remove_noise_from_point_clouds.py --input_folder_path_point_clouds <INPUT_FOLDER_PATH_POINT_CLOUDS> \
--output_folder_path_point_clouds <OUTPUT_FOLDER_PATH_POINT_CLOUDS>
In addition, a data converter/exporter enables you to convert the labels from OpenLABEL format into other formats like KITTI, nuScenes, OpenPCDet, COCO or YOLO and the other way round.
The following script converts the OpenLABEL labels into YOLO labels:
python tum-traffic-dataset-dev-kit/src/converter/conversion_openlabel_to_yolo.py --input_folder_path_labels <INPUT_FOLDER_PATH_LABELS> \
--output_folder_path_labels <OUTPUT_FOLDER_PATH_LABELS>
The following script converts the OpenLABEL labels into KITTI labels:
python tum-traffic-dataset-dev-kit/src/converter/conversion_openlabel_to_kitti.py --root-dir <DATASET_ROOT_DIR> \
--out-dir <OUTPUT_FOLDER_PATH_LABELS> \
--file-name-format [name,num]
The following script converts the OpenLABEL labels into nuScenes labels:
python tum-traffic-dataset-dev-kit/src/converter/conversion_openlabel_to_nuscenes.py --root-path <DATASET_ROOT_DIR> \
--out-dir <OUTPUT_FOLDER_PATH_LABELS>
Finally, some model evaluation scripts are provided to benchmark your models on the TUMTraf Dataset.
Usage:
python tum-traffic-dataset-dev-kit/src/eval/evaluation.py --camera_id <CAMERA_ID> --file_path_calibration_data <FILE_PATH_CALIBRATION_DATA> --folder_path_ground_truth /path/to/ground_truth --folder_path_predictions /path/to/predictions --object_min_points 5 [--use_superclasses] --prediction_type lidar3d_supervised --prediction_format openlabel --use_ouster_lidar_only
Example:
python tum-traffic-dataset-dev-kit/src/eval/evaluation.py --camera_id s110_camera_basler_south1_8mm --file_path_calibration_data /home/user/tum-traffic-dataset-dev-kit/calib/s110_camera_basler_south1_8mm.json --folder_path_ground_truth /home/user/tum-traffic-intersection-dataset/test/labels_point_clouds --folder_path_predictions /home/user/tum-traffic-intersection-dataset/test/predictions --object_min_points 5 --prediction_type lidar3d_supervised --prediction_format openlabel --use_ouster_lidar_only
Data format of predictions can be KITTI or OpenLABEL.
- KITTI format: One
.txt
file per frame with the following content (one line per predicted object): class x y z l w h rotation_z.
Example:
Car 16.0162 -28.9316 -6.45308 2.21032 3.74579 1.18687 2.75634
Car 17.926 -19.4624 -7.0266 1.03365 0.97037 0.435425 0.82854
- OpenLABEL format: One
.json
file per frame.
Example call to compare one ground truth file with one prediction file visually:
python tum-traffic-dataset-dev-kit/src/eval/evaluation.py --folder_path_ground_truth ~/tum_traffic_a9_dataset_r01_test/labels/1651673050_454284855_s110_lidar_ouster_south.json \
--folder_path_predictions ~/predictions/1651673050_454284855_s110_lidar_ouster_south.json \
--object_min_points 5
Example call to evaluate the whole set if ground truth bounding boxes enclose more than 5 points:
python tum-traffic-dataset-dev-kit/src/eval/evaluation.py --folder_path_ground_truth ~/tum_traffic_dataset_r01_test_set/labels \
--folder_path_predictions ~/detections \
--object_min_points 5
Final result when evaluating the InfraDet3D camera-LiDAR fusion model on the TUM Traffic Intersection Dataset (test set):
Class | Occurrence (pred/gt) | Precision | Recall | AP@0.1 |
---|---|---|---|---|
CAR | 2018/1003 | 71.75 | 87.33 | 71.64 |
TRUCK | 228/203 | 91.20 | 85.03 | 91.03 |
TRAILER | 116/132 | 73.48 | 71.06 | 72.95 |
VAN | 55/67 | 76.95 | 70.26 | 76.48 |
MOTORCYCLE | 27/31 | 82.72 | 70.71 | 82.37 |
BUS | 34/32 | 99.93 | 100.00 | 99.93 |
PEDESTRIAN | 144/128 | 31.37 | 25.49 | 30.00 |
BICYCLE | 177/67 | 36.02 | 80.77 | 35.93 |
EMERGENCY_VEHICLE | 1/0 | 0.00 | 0.00 | 0.00 |
OTHER | 1/4 | 25.49 | 6.37 | 24.00 |
Total (10 classes) | 2801/1704 | 58.89 | 59.70 | 58.43 |
Total (6 classes) | 2628/1464 | 68.83 | 74.89 | 68.48 |
The PointPillars model was trained on registered point clouds from 2 LiDARs with boxes that contain a minimum of 5 points. For the camera modality (MonoDet3D) only Car and Bicycle detections were processed.
python tum-traffic-dataset-dev-kit/src/eval/evaluation_2d_ultralytics_mAP.py --image_folder_path <IMAGE_FOLDER_PATH> \
--path_to_ground_truth <PATH_TO_GROUND_TRUTH> \
--path_to_predictions <PATH_TO_PREDICTIONS> \
--prediction_format openlabel \
--plots \
--save_dir <SAVE_DIR>
python tum-traffic-dataset-dev-kit/src/eval/evaluation_yolo_seg_models.py --yolo_version yolov8 \
--conf 0.25 \
--imgsz 640 \
--path_to_model_weight <PATH_TO_MODEL_WEIGHT> \
--data_yaml <DATA_YAML_PATH> \
--show_meanIoU
The dev-kit was created in the context of the Providentia++ project funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and the AUTOtech.agil project funded by the German Federal Ministry of Education and Research (BMBF). The authors would like to thank the project partners for their support.
@inproceedings{zimmermann20193d,
title={3D BAT: A Semi-Automatic, Web-based 3D Annotation Toolbox for Full-Surround, Multi-Modal Data Streams},
author={Zimmer, Walter and Rangesh, Akshay and Trivedi, Mohan M.},
booktitle={2019 IEEE Intelligent Vehicles Symposium (IV)},
pages={1--8},
year={2019},
organization={IEEE}
}
@inproceedings{cress2022a9,
author={Creß, Christian and Zimmer, Walter and Strand, Leah and Fortkord, Maximilian and Dai, Siyi and Lakshminarasimhan, Venkatnarayanan and Knoll, Alois},
booktitle={2022 IEEE Intelligent Vehicles Symposium (IV)},
title={A9-Dataset: Multi-Sensor Infrastructure-Based Dataset for Mobility Research},
year={2022},
volume={},
number={},
pages={965-970},
doi={10.1109/IV51971.2022.9827401}
}
@inproceedings{zimmer2023tumtraf,
title={TUMTraf Intersection Dataset: All You Need for Urban 3D Camera-LiDAR Roadside Perception [Best Student Paper Award]},
author={Zimmer, Walter and Cre{\ss}, Christian and Nguyen, Huu Tung and Knoll, Alois C},
publisher = {IEEE},
booktitle={2023 IEEE Intelligent Transportation Systems ITSC},
year={2023}
}
@inproceedings{zimmer2024tumtrafv2x,
title={TUMTraf V2X Cooperative Perception Dataset},
author={Zimmer, Walter and Wardana, Gerhard Arya and Sritharan, Suren and Zhou, Xingcheng and Song, Rui and Knoll, Alois C.},
publisher={IEEE/CVF},
booktitle={2024 IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
The TUM Traffic Dataset Development Kit scripts are released under MIT license as found in the license file.
The TUM Traffic Dataset (TUMTraf
) dataset itself is released under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
By downloading the dataset you agree to the terms of this license.
Please feel free to contact us with any questions, suggestions or comments:
Walter Zimmer (walter.zimmer@tum.de)
Christian Creß (christian.cress@tum.de)
Xingcheng Zhou (xingcheng.zhou@tum.de)