lang | tags | image |
---|---|---|
zh-tw |
java, algorithm |
目錄
會給一個Array,分別求Array的最大值和最小值
Example | Method Calling / Return |
---|---|
Input | ArrayData(new int{1,2,3}) |
Output | int min() = 3, max() = 1 |
public abstract class ArrayData {
public int [] A;
public abstract int max();
public abstract int min();
}
由於助教沒有給定傳入陣列的方式,一開始假設助教使用 HW01.A=測資
,所以直接實作
max()
、min()
public class HW01_1 extends ArrayData{
public int max(){
int max = A[0];
for(int i = 1; i < A.length; i++)
if(A[i]>max) max=A[i];
}
public int min(){
int min = A[0];
for(int i = 1; i < A.length; i++)
if(A[i]<min)min=A[i];
}
}
結果當然是報錯的,因為助教是用建構元 ArrayData(int[])
來建構我們的 class
成物件再用這個物件呼叫 max()
、min()
,所以應該這樣實作
public class HW01_2 extends ArrayData{
public HW01_2(final int[] A) {
this.A = A;
}
public int max(){
int max = A[0];
for(int i = 1; i < A.length; i++)
if(A[i]>max) max=A[i];
}
public int min(){
int min = A[0];
for(int i = 1; i < A.length; i++)
if(A[i]<min)min=A[i];
}
}
這樣實作的時間複雜度會是 O(N)
。但既然助教在建構元就傳入陣列了,我們可以在建構的時候就找出最大、最小值再呼叫
public class HW01_3 extends ArrayData{
public int max, min;
public HW01_3(final int[] A){
max = min = A[0];
for(int i = 1; i < A.length; i++)
if(A[i]>max) max = A[i];
if(A[i]<min) min = A[i];
}
}
public int max(){ return max; }
public int min(){ return min; }
}
理論上助教如果計時是在呼叫 max()
、min()
前後才開始計時,這個版本相當於直接回傳答案,所以時間複雜度會是 O(1)
。
計算陣列中任意三個數字相加為零的組合數 (數組中不會有重複的數字)
Example | Method Calling / Return |
---|---|
Input | int[] A = {-1,1,2,4,8,-3} |
Output | int T_sum(A) = 2 |
分別是 (1,2,-3) 以及 (-1,4,-3) 2組
public abstract class ThreeSum {
public abstract int T_sum(int[] A);
}
public class HW02_1 extends ThreeSum{
public int T_sum(int[] A){
int count = 0;
for(int i = 0; i < N; i++)
for(int j = i+1; j < N; j++)
for(int k = j+1; k < N; k++)
if(a[i]+a[j]+a[k] == 0)
count++;
return count;
}
}
暴力解,時間複雜度是 O(N³)
。
參考老師的投影片 Lecture 2 第 40,42 頁裡的程式碼,整合、修改一下
import java.util.Arrays;
public class HW02_2 extends ThreeSum{
public int T_sum(int[] a){
Arrays.sort(a);
int N = a.length-2;
int cnt = 0;
for(int i = 0; i < N; i++){
int key = -a[i];
int lo = i+1, hi = a.length-1;
while(lo < hi){
int sum = a[lo] + a[hi];
if(key < sum) hi--;
else if (key > sum) lo++;
else{ hi--; lo++; cnt++; }
}
}
return cnt;
}
}
這樣時間複雜度是 O(N²)
。另外由於老師不讓我們 import
,所以我們要自己實作 sort(int[])
。
Input: An array. In this mission we find the peak of the array, then find out which cutting position of the array which could produce a sorted array.
Final return: Cutting position of the array
TestCase(input) will not include arrays like:
- All same:
8,8,8,8,8,8
- Whole ascending:
1,2,3,4,5,6,7
Example | Method Calling / Return |
---|---|
Input 1 | int[] A1 = {5,6,7,1,2,3,4} |
Output 1 | int H_Finding(A1) = 3 |
Input 2 | int[] A2 = {5,7,8,8,1,3,4} |
Output 2 | int H_Finding(A2) = 2 |
public abstract class HillFinding {
public abstract int H_Finding(int[] A);
}
因為題目說不會有 1,2,3,4,5,6,7
的情況,可以這樣實作
public class HW03_1 extends HillFinding {
public int H_Finding(int[] A){
int i = 0;
for(i=0; A[i]<=A[++i];);
return A.length-1-i;
}
}
暴力解,時間複雜度是 O(N)
。
同樣,參考老師的投影片 Lecture 2 第 40 頁裡的程式碼,修改一下
public class HW03_2 extends HillFinding {
public int H_Finding(final int[] A) {
final int END = A.length-1;
int lo = 0, hi=END;
for(mid=hi>>>1; lo <= hi; mid = lo+hi>>>1){
if(mid < END && A[mid+1] < A[mid])
return END-i-1;
else if(mid > lo && A[mid-1] > A[mid])
return END-i;
else if(A[hi]>A[mid]) hi = mid-1;
else lo = mid+1;
}
int i;
for(i=0; A[i]<=A[++i];); // 最後手段
return END-i;
}
}
在 for()
迴圈裡找不到答案會是例外狀況,所以我加了最後手段,這樣時間複雜度是 O(lgN)
。
Your program will take a bunch of string arrays as input. Please determine whether a given array comes from { 0k1k | k ∈ Z+ } ( the input arrays do not contain empty string and non 0,1 characters)
For example,
- Input:
["0011","00111"]
, Output:[true,false]
- Input:
["01","1100","1111"]
, Output:[true,false,false]
Example | Method Calling / Return |
---|---|
Input 1 | String[] str1 = {"0011","00111"} |
Output 1 | boolean[] one0k(str1) = {true,false} |
Input 2 | String[] str2 = {"01","1100","1111"} |
Output 2 | boolean[] one0k(str2) = {true,false,false} |
public abstract class One_0k_rock {
public abstract boolean[] one0k(String[] str);
}
由於 Java 的 String 內建的 matches(String)
可以讓我們使用正則表達式判斷,取字串長度的一半(len>>>1
)作為 0k1k 裡的 k ,所以可以這樣實作
public class HW04_1 extends One_0k_rock {
public boolean[] one0k(final String[] str) {
final boolean[] result = new boolean[str.length];
for(int i = 0; i < str.length; i++){
final int len = str[i].length();
if((len&1)==1) continue; // 奇數個的情況跳過: l&1 相當於 l%2
final int half = len>>>1;
if(str[i].matches("0{"+half+"}1{"+half+"}"))
result[i] = true;
}
return result;
}
}
這樣的實作我們無法得知時間複雜度是多少,因為我們不是寫 matches(String)
這個函式的人,但結果都比下面來的慢。
一個基本的想法,從左邊到中間數過去第一個、右邊到中間數過來第一個開始比較,不對就跳出迴圈,可以這樣實作
public class HW04_2 extends One_0k_rock {
public boolean[] one0k(final String[] str) {
final boolean[] result = new boolean[str.length];
for(int i=0,j; i<str.length; ++j) {
final String s = str[i];
final int len = s.length();
if((len&1)==1) continue;
final int end = len -1;
for(j = -1; s.charAt(++j)=='0' && s.charAt(end-j)=='1';);
// j 如果指到 len>>>1 就代表條件通過了 (len>>>1)-1 次
if((len>>>1)==j) result[i] = true;
}
return result;
}
}
你可能會想問,為什麼不直接 str[i].charAt(++j)<str[i].charAt(l-1-j)
就好?答案是因為用 chatAt(int)
也需要耗時間,我直接生一個立即的字符來比較,如果不對當下直接跳出迴圈,就可以省去多一次呼叫的時間。這樣對於每個正確的字串來說時間複雜度會是 T(5+½N+½N+2) = T(7+N) ~ O(N)
。
感謝 @bettyteng21 提出,如果從中間開始比,可以同時判斷奇數的情況,省去一個步驟,可以這樣實作
public class HW04_3 extends One_0k_rock {
public boolean[] one0k(final String[] str) {
final boolean[] result = new boolean[str.length];
for(int i=0; i<str.length; ++i) {
final String s = str[i];
final int end = s.length()-1;
try{
for(int j=(end>>>1)+1; s.charAt(--j)=='0' && s.charAt(end-j)=='1';);
}catch(IndexOutOfBoundsException __){
// j 如果指到 -1 就代表條件通過了 len>>>1 次
result[i] = true;
}
}
return result;
}
快那麼一點,這樣對於每個正確的字串來說時間複雜度會是 T(3+½N+½N+1) = T(4+N) ~ O(N)
,但我有看過 @bettyteng21 的程式碼,時間複雜度算下來其實比上面從前面開始比的方法來的高,但就比較快,推測是因為測資 false
的結果居多所導致。
Your program will take a set that consists of two-dimensional points as input. Please determine whether the given set containing three points lie in a line.
Here is our sample testdata: [[1,1],[2,2],[3,6]]
Example | Method Calling / Return |
---|---|
Input | int[][] array = {{1,1},{2,2},{3,6}} |
Output | boolean checkLLK(array) = false |
public abstract class LLK{
public abstract boolean checkLLK(int[][] array);
}
施工中...:gear:
Your program will take an integer arrays as input.
Please return the maximum possible number of blocks in a valid partitioning.
A valid partitioning of the integer array is defined as follows.
- The numbers are split into blocks — groups of consecutive numbers. The blocki,j consists of number ni, ni+1, ..., nj. A block can have only a single number.
- Every number belongs to one block only.
- The partitioning should satisfy the condition that after each block is sorted, the whole sequence becomes sorted as well.
Example | Method Calling / Return |
---|---|
Input | int[][] inputArr = {{1,1,1,1,1,1,1},{1,3,5,7,9},{1,2,3},{5,4,3,2,1},{2,1,3,2}} |
Output | int[] maxBlocks(inputArr) = {7,5,3,1,2} |
public abstract class Dessert_Desert{
public abstract int[] maxBlocks(int[][] inputArr);
}
施工中...:gear:
Your program will take a two-dimensional integer array as input.
Each element represents a smartphone model which contains two features (e.g. screen size and performance ranking).
Please return an array containing a list of unbeatable smartphone models (In other words, filter out the phone models that can be beat by some model).
Given two items A =(Xa, Ya) and B =(Xb, Yb), Item A beats Item B iff xa≥xb and ya≥yb
Example | Method Calling / Return |
---|---|
Input | int[][] inputArr = {{1,1},{2,4},{2,10},{5,4},{4,8},{5,5},{8,4},{10,2},{10,1}} |
Output | int[][] bestPhone(inputArr) = {{2,10},{4,8},{5,5},{8,4},{10,2}} |
public abstract class Buy_Phone{
public abstract int[][] bestPhone(int[][] inputArr);
}
施工中...:gear:
Your program will take a six-dimensional integer array as input.
Each element represents a smartphone model which contains six features (e.g. screen size, performance ranking and etc.).
Please return an sorted array containing a list of unbeatable smartphone models (In other words, filter out the phone models that can be beaten by some model).
The return array should be sorted by the first element of each array in the output.
Example | Method Calling / Return |
---|---|
Input | int[][] inputArr = {{8,7,7,4,2,1},{2,4,4,6,2,1},{4,0,5,1,3,2},{5,2,4,3,7,3},{7,5,6,9,8,9}} |
Output | int[][] bestPhone(inputArr) = {{7,5,6,9,8,9},{8,7,7,4,2,1}} |
public abstract class Buy_Phone_v2{
public abstract int[][] bestPhone(int[][] inputArr);
}
施工中...:gear:
Your program will take a two-dimensional integer array as input.
Each element in the array represents nodes lined together
Please return the longest shortest-path in the given graph.
Given a graph G = (V, E), find maxu,v d(u, v), where d(u,v) denotes the shortest path length between node u and node v, for all possible u, v
(In this home work, You may use java.util.collections
、 java.util.ArrayList
、 java.util.Stack
, but java.util.*
is not allowed.)
Example | Method Calling / Return |
---|---|
Input | int[][] array = {{0,1},{0,2},{0,4},{1,3},{1,4},{2,5},{6,7}} |
Output | int Distance(array) = 4 |
public abstract class LSD{
public abstract int Distance(int[][] array);
}
施工中...:gear:
Your program will take an integer array as input. Please return the sorted ascending array in the given array.
Example | Method Calling / Return |
---|---|
Input | int[] A = {-1,2,5,9,8,7,1,3,2} |
Output | int[] sorting(A) = {-1,1,2,2,3,5,7,8,9} |
public abstract class SortingArray {
public abstract int[] sorting(int[] A);
}
施工中...:gear:
Your program will take two string array as input.
The points corresponding to the same index in the array will be connected to form an edge.
Please return the number of the groups in the given array.
Example | Method Calling / Return |
---|---|
Input | String[] A = {"A","B","B","C","B","D","F","G"}, B = {"E","E","C","D","D","E","H","H"} |
Output | int count(A,B) = 2 |
public abstract class GroupCounting {
public abstract int count(String[] A, String[] B);
}
施工中...:gear: