Skip to content

Commit

Permalink
Merge branch 'imprv_doc_theis_lf' into 'master'
Browse files Browse the repository at this point in the history
[web] Improvement of the document of the Theis' problem

See merge request ogs/ogs!5165
  • Loading branch information
bilke committed Dec 20, 2024
2 parents 2aa148a + 2e06198 commit 9a1da6a
Show file tree
Hide file tree
Showing 6 changed files with 116 additions and 195 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -4,42 +4,65 @@ title = "Theis' problem"
weight = 171
project = ["Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.prj"]
author = "Wenqing Wang"
image = "theis_comparison.png"
image = "theis.png"
+++

{{< data-link >}}

## Problem description

Theis' problem examines the transient lowering of the water table induced by a pumping well. Theis' fundamental insight was to recognize that Darcy's law is analogous to the law of heat flow by conduction, i.e., hydraulic pressure being analogous to temperature, pressure-gradient to thermal gradient.
Theis' problem examines the transient lowering of the water table induced by a
pumping well. Theis' fundamental insight was recognizing that Darcy's law
is analogous to the law of heat conduction, with hydraulic pressure analogous
to temperature and the pressure gradient analogous to the thermal gradient.

The assumptions required by the Theis solution are:
The assumptions required for the Theis solution are as follows:

- the aquifer is homogeneous, isotropic, confined, infinite in radial extent,
- the aquifer has uniform thickness, horizontal piezometric surface
- the well is fully penetrating the entire aquifer thickness,
- the well storage effects can be neglected,
- the well has a constant pumping rate,
- no other wells or long term changes in regional water levels.
- The aquifer is homogeneous, isotropic, confined, and semi-infinite in radial extent.
- The aquifer has uniform thickness.
- The well fully penetrates the entire aquifer thickness.
- The effects of well storage can be neglected.
- The well has a constant pumping rate.
- No other wells exist.

The problem can be expressed as an axisymmetric one, which is described
mathematically in a radial coordinate system as follows:

$$
S \dfrac{\partial h}{\partial t} = T\dfrac{1}{r}\dfrac{\partial}{\partial r}
\left( r \dfrac{\partial h}{\partial r}\right),
$$
$$
\begin{align*}
&h(\infty, t) = h_0, \forall\, t\geqslant0,\\
& 2\pi T \lim_{r\rightarrow0}\left(r \dfrac{\partial h}{\partial r}\right)=Q_w,
\end{align*}
$$
where $T$ is the aquifer transmissivity or hydraulic conductivity [$L^{2}T^{-1}$],
$S$ is the aquifer storage $[-]$,
$h_0$ is the constant initial hydraulic head $[L]$,
$Q_w$ is the constant discharge rate [$L^{3}T^{-1}$],
$t$ is time $[T]$, $r$ $[L]$ is the distance from the well.

## Analytical solution

The analytical solution of the drawdown as a function of time and distance is expressed by
The analytical solution of the above equation, or the head drawdown, is obtained
as
$$
\begin{eqnarray}
h_0 - h(t,x,y) = \frac{Q}{4\pi T}W(u)
h_0 - h(t,r) = \frac{Q}{4\pi T}W(u)
\label{theis}
\end{eqnarray}
$$

$$
\begin{eqnarray}
u = \frac{(x^{2}+y^{2})S}{4Tt}
u = \frac{r^{2}S}{4Tt}
\label{theis_u}
\end{eqnarray}
$$

where $h_0$ is the constant initial hydraulic head $[L]$, $Q$ is the constant discharge rate [$L^{3}T^{-1}$], $T$ is the aquifer transmissivity [$L^{2}T^{-1}$], $t$ is time $[T]$, $x,y$ is the coordinate at any point $[L]$ and $S$ is the aquifer storage $[-]$. $W(u)$ is the well function defined by an infinite series for a confined aquifer as
where $W(u)$ is the well function defined by an infinite series for a confined
aquifer as

<!-- vale off -->
$$
Expand All @@ -50,187 +73,85 @@ W(u) = -\gamma -lnu + \sum^{\infty}_{k=1}{\frac{(-1)^{k+1}u^k}{k\cdot k!}}
$$
<!-- vale on -->

where $\gamma\approx$ 0.5772 is the Euler-Mascheroni constant. For practical purposes, the simplest approximation of $W(u)$ was proposed as $W(u)=-0.5772-lnu$ for $u <$ 0.05. Other more exact approximations of the well function were summarized by R. Srivastava and A. Guzman-Guzman
where $\gamma\approx$ 0.5772 is the Euler-Mascheroni constant. For practical
purposes, the simplest approximation of $W(u)$ was proposed as
$W(u)=-0.5772-lnu$ for $u <$ 0.05. Other more exact approximations of the
well function were summarized by R. `Srivastava` and A. `Guzman-Guzman` [[1]](#1).

## Numerical settings

The parameters are taken from the paper by `Pinder` and `Frind` [[2]](#2) and
the book by O. `Koldtiz` et.al [[3]](#3). As in [[3]](#3), the length unit
is converted from feet to meters.
The well radius $r_0$ is 0.3048 m, the infinite domain is approximated with a
boundary located at a large distance of 304.8 m from the well center.

The parameters are given in the following table:

| Parameter | Symbol | Value | Unit |
| :--------------------- | :------------ | :-------------: | ------: |
| Initial condition | $h(r,0)$ | 0.0 | m |
| Pumping rate | $Q$ | 1223.3 | m$^3$/d |
| Boundary condition | $h(304.8, t)$ | 0 | m |
| Hydraulic conductivity | $T$ | 9.2903$10^{-4}$ | m/s |
| Storage coefficient | $S$ | $10^{-3}$ | - |

Where the pumping rate is uniformly applied to the well surface as a Neumann
boundary condition with the value calculated as $Q/(2\pi r_0)/86400$
with a unit of m/s.

## Results and evaluation

The following figure compares the analytical solution, the result by OGS-5, and
the result by OGS-6 (labeled as `pressure`) within the range that satisfies
$u <$ 0.05.
{{< figure src="theis_comparison.png" >}}
The figure shows that there is a good match between the analytical solution and
the numerical solution obtained by using OGS-5 or OGS-6.

<p>Some of the data of the above curves are given in the following table.</p>
<table>
<caption>Comparison of solutions (where <em>Distance</em> means the distance
from the position where the source term is applied).</caption>
<tbody>
<tr class="odd">
<td style="text-align: left;">Distance</td>
<td style="text-align: left;">Analytic</td>
<td style="text-align: left;">OGS-5</td>
<td style="text-align: left;">OGS-6</td>
<td style="text-align: left;">Error</td>
<td style="text-align: left;">Error</td>
</tr>
<tr class="even">
<td style="text-align: left;"></td>
<td style="text-align: left;">Solution (<span class="math inline"><em>h</em><sub><em>a</em></sub></span>)</td>
<td style="text-align: left;">(<span class="math inline"><em>h</em><sub>5</sub></span>)</td>
<td style="text-align: left;">(<span class="math inline"><em>h</em><sub>6</sub></span>)</td>
<td style="text-align: left;">(<span class="math inline">$|\frac{h_5-h_a}{h_a}|$</span>)</td>
<td style="text-align: left;">(<span class="math inline">$|\frac{h_6-h_a}{h_a}|$</span>)</td>
</tr>
<tr class="odd">
<td style="text-align: left;">0</td>
<td style="text-align: left;">12.8141</td>
<td style="text-align: left;">12.474</td>
<td style="text-align: left;">12.474</td>
<td style="text-align: left;">0.0265</td>
<td style="text-align: left;">0.0272</td>
</tr>
<tr class="even">
<td style="text-align: left;">1.21799</td>
<td style="text-align: left;">8.9441</td>
<td style="text-align: left;">8.79341</td>
<td style="text-align: left;">8.79341</td>
<td style="text-align: left;">0.0168</td>
<td style="text-align: left;">0.0171</td>
</tr>
<tr class="odd">
<td style="text-align: left;">2.43597</td>
<td style="text-align: left;">7.48878</td>
<td style="text-align: left;">7.34717</td>
<td style="text-align: left;">7.34717</td>
<td style="text-align: left;">0.0189</td>
<td style="text-align: left;">0.0192</td>
</tr>
<tr class="even">
<td style="text-align: left;">3.65396</td>
<td style="text-align: left;">6.59978</td>
<td style="text-align: left;">6.46176</td>
<td style="text-align: left;">6.46176</td>
<td style="text-align: left;">0.0209</td>
<td style="text-align: left;">0.0213</td>
</tr>
<tr class="odd">
<td style="text-align: left;">4.87195</td>
<td style="text-align: left;">5.94548</td>
<td style="text-align: left;">5.81072</td>
<td style="text-align: left;">5.81072</td>
<td style="text-align: left;">0.0226</td>
<td style="text-align: left;">0.0231</td>
</tr>
<tr class="even">
<td style="text-align: left;">6.08994</td>
<td style="text-align: left;">5.43381</td>
<td style="text-align: left;">5.30267</td>
<td style="text-align: left;">5.30267</td>
<td style="text-align: left;">0.0241</td>
<td style="text-align: left;">0.0247</td>
</tr>
<tr class="odd">
<td style="text-align: left;">7.30792</td>
<td style="text-align: left;">5.00981</td>
<td style="text-align: left;">4.88283</td>
<td style="text-align: left;">4.88283</td>
<td style="text-align: left;">0.0253</td>
<td style="text-align: left;">0.0260</td>
</tr>
<tr class="even">
<td style="text-align: left;">8.52591</td>
<td style="text-align: left;">4.65012</td>
<td style="text-align: left;">4.52793</td>
<td style="text-align: left;">4.52793</td>
<td style="text-align: left;">0.0262</td>
<td style="text-align: left;">0.0269</td>
</tr>
<tr class="odd">
<td style="text-align: left;">8.83041</td>
<td style="text-align: left;">4.56714</td>
<td style="text-align: left;">4.44623</td>
<td style="text-align: left;">4.44623</td>
<td style="text-align: left;">0.0264</td>
<td style="text-align: left;">0.0271</td>
</tr>
<tr class="even">
<td style="text-align: left;">9.4394</td>
<td style="text-align: left;">4.4116</td>
<td style="text-align: left;">4.29344</td>
<td style="text-align: left;">4.29344</td>
<td style="text-align: left;">0.0267</td>
<td style="text-align: left;">0.0275</td>
</tr>
<tr class="odd">
<td style="text-align: left;">10.6574</td>
<td style="text-align: left;">4.12707</td>
<td style="text-align: left;">4.01501</td>
<td style="text-align: left;">4.01501</td>
<td style="text-align: left;">0.0271</td>
<td style="text-align: left;">0.0279</td>
</tr>
<tr class="even">
<td style="text-align: left;">15.2248</td>
<td style="text-align: left;">3.28072</td>
<td style="text-align: left;">3.19698</td>
<td style="text-align: left;">3.19698</td>
<td style="text-align: left;">0.0255</td>
<td style="text-align: left;">0.0261</td>
</tr>
<tr class="odd">
<td style="text-align: left;">20.0968</td>
<td style="text-align: left;">2.61899</td>
<td style="text-align: left;">2.57517</td>
<td style="text-align: left;">2.57517</td>
<td style="text-align: left;">0.0167</td>
<td style="text-align: left;">0.0170</td>
</tr>
<tr class="even">
<td style="text-align: left;">22.8373</td>
<td style="text-align: left;">2.31338</td>
<td style="text-align: left;">2.29626</td>
<td style="text-align: left;">2.29626</td>
<td style="text-align: left;">0.0074</td>
<td style="text-align: left;">0.0074</td>
</tr>
<tr class="odd">
<td style="text-align: left;">24.0553</td>
<td style="text-align: left;">2.18892</td>
<td style="text-align: left;">2.1846</td>
<td style="text-align: left;">2.1846</td>
<td style="text-align: left;">0.0019</td>
<td style="text-align: left;">0.0019</td>
</tr>
<tr class="even">
<td style="text-align: left;">25.2732</td>
<td style="text-align: left;">2.07055</td>
<td style="text-align: left;">2.07958</td>
<td style="text-align: left;">2.07958</td>
<td style="text-align: left;">0.0043</td>
<td style="text-align: left;">0.0043</td>
</tr>
<tr class="odd">
<td style="text-align: left;">25.5777</td>
<td style="text-align: left;">2.04164</td>
<td style="text-align: left;">2.05407</td>
<td style="text-align: left;">2.05407</td>
<td style="text-align: left;">0.0060</td>
<td style="text-align: left;">0.0060</td>
</tr>
<tr class="even">
<td style="text-align: left;">29.8407</td>
<td style="text-align: left;">1.67134</td>
<td style="text-align: left;">1.73518</td>
<td style="text-align: left;">1.73518</td>
<td style="text-align: left;">0.0381</td>
<td style="text-align: left;">0.0367</td>
</tr>
</tbody>
</table>
<p>The analytical solutions are for an ideal problem with point wise pumping
term. While for the FEM analysis, the point wise source value is distributed to
the surface of a small hole around the source point in order to avoid the
singularity. One can see from the table that the precisions of the FEM
solutions are still acceptable with such transform of the point pumping
term.</p>
Firstly, we examine the head variation at a point $r=9.7536$ m, representing the
observation position. The figure below compares the head variation
obtained by using the analytical solution, the result from OGS-5, and
the result from OGS-6, respectively, within the time interval [10, 10$^5$] s.

<img src="p_t_at_r9.7536_Theis.png" alt="Head variation" height="320"/>

The figure demonstrates a good match between the analytical solution and
the numerical solutions obtained using OGS-5 and OGS-6 within the time interval
[10, 10$^4$] s, consistent with the results provided in [[2]](#2) and [[3]](#3).
A similar good match is observed in the following figure, which
compares the head profiles at t=1728 s:

<img src="p_profile_at_1728_Theis.png" alt="Head profile at t=1728 s" width="960" height="320"/>
At the point with the largest head value, the absolute error of the numerical
solution is approximately 0.34.

Beyond 10$^4$, an evident discrepancy arises between the
analytical solution and the numerical solutions.
This discrepancy increases over time due to the inability of the numerical method
for a bounded domain (like the FEM) to represent an infinite domain accurately.

The figures below show the comparison of the head profiles at t=10$^5$ s,
highlighting this significant discrepancy.

<img src="p_profile_at_100000.0_Theis.png" alt="Head profile at t=1e5 s" width="960" height="320"/>

## Conclusions

<p>The analytical solutions are obtained for an ideal problem with an infinite domain.
However, in the FEM analysis, the infinite domain must be approximated within a
finite range. Therefore, the numerical method provides accurate
solutions only for positions relatively close to the well and within
a specific time interval. Despite this limitation, real-world application
are typically constrained by similar conditions, making the numerical
approach valid and practical for most idealized cases from the in situ
experiments.
</p>

### Reference

<a id="1">[1]</a>
`Srivastava`, R. and `Guzman‐Guzman`, A., 1998. Practical approximations of the well
function. *Groundwater*, 36(5), pp.844-848.

<a id="2">[2]</a>
`Pinder`, G.F. and `Frind`, E.O., 1972. Application of Galerkin's procedure to
aquifer analysis. *Water Resources Research*, 8(1), pp.108-120.

<a id="3">[3]</a>
`Kolditz`, O., `Shao`, H., `Wang`, W. and `Bauer`, S., 2016. Thermo-hydro-mechanical
chemical processes in fractured porous media: modelling and benchmarking
(Vol. 25). Berlin: Springer.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.

0 comments on commit 9a1da6a

Please sign in to comment.