Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VisDrone2019-DET Dataset Auto-Download #2882

Merged
merged 5 commits into from
Apr 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion data/argoverse_hd.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /argoverse
# /yolov5
Expand Down
2 changes: 1 addition & 1 deletion data/coco.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# COCO 2017 dataset http://cocodataset.org
# Train command: python train.py --data coco.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /coco
# /yolov5
Expand Down
2 changes: 1 addition & 1 deletion data/coco128.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /coco128
# /yolov5
Expand Down
2 changes: 1 addition & 1 deletion data/scripts/get_argoverse_hd.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Download command: bash data/scripts/get_argoverse_hd.sh
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /argoverse
# /yolov5
Expand Down
2 changes: 1 addition & 1 deletion data/scripts/get_coco.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# COCO 2017 dataset http://cocodataset.org
# Download command: bash data/scripts/get_coco.sh
# Train command: python train.py --data coco.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /coco
# /yolov5
Expand Down
113 changes: 45 additions & 68 deletions data/scripts/get_voc.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash data/scripts/get_voc.sh
# Train command: python train.py --data voc.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /VOC
# /yolov5
Expand All @@ -29,34 +29,27 @@ echo "Completed in" $runtime "seconds"

echo "Splitting dataset..."
python3 - "$@" <<END
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import xml.etree.ElementTree as ET
from os import getcwd

sets = [('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
"horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

def convert_box(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh

def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)

def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt' % (year, image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
Expand All @@ -65,74 +58,58 @@ def convert_annotation(year, image_id):
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert_box((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

cwd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
if not os.path.exists('VOCdevkit/VOC%s/labels/' % year):
os.makedirs('VOCdevkit/VOC%s/labels/' % year)
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
list_file = open('%s_%s.txt' % (year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n' % (cwd, year, image_id))
convert_annotation(year, image_id)
list_file.close()

END

cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt

python3 - "$@" <<END
mkdir ../VOC ../VOC/images ../VOC/images/train ../VOC/images/val
mkdir ../VOC/labels ../VOC/labels/train ../VOC/labels/val

import shutil
python3 - "$@" <<END
import os
os.system('mkdir ../VOC/')
os.system('mkdir ../VOC/images')
os.system('mkdir ../VOC/images/train')
os.system('mkdir ../VOC/images/val')

os.system('mkdir ../VOC/labels')
os.system('mkdir ../VOC/labels/train')
os.system('mkdir ../VOC/labels/val')

import os
print(os.path.exists('../tmp/train.txt'))
f = open('../tmp/train.txt', 'r')
lines = f.readlines()

for line in lines:
line = "/".join(line.split('/')[-5:]).strip()
if (os.path.exists("../" + line)):
os.system("cp ../"+ line + " ../VOC/images/train")

line = line.replace('JPEGImages', 'labels')
line = line.replace('jpg', 'txt')
if (os.path.exists("../" + line)):
os.system("cp ../"+ line + " ../VOC/labels/train")
with open('../tmp/train.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/train")

line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/train")

print(os.path.exists('../tmp/2007_test.txt'))
f = open('../tmp/2007_test.txt', 'r')
lines = f.readlines()

for line in lines:
line = "/".join(line.split('/')[-5:]).strip()
if (os.path.exists("../" + line)):
os.system("cp ../"+ line + " ../VOC/images/val")

line = line.replace('JPEGImages', 'labels')
line = line.replace('jpg', 'txt')
if (os.path.exists("../" + line)):
os.system("cp ../"+ line + " ../VOC/labels/val")

with open('../tmp/2007_test.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/val")

line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/val")
END

rm -rf ../tmp # remove temporary directory
Expand Down
65 changes: 65 additions & 0 deletions data/visdrone.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
# Train command: python train.py --data visdrone.yaml
# Default dataset location is next to YOLOv5:
# /parent_folder
# /VisDrone
# /yolov5


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../VisDrone/VisDrone2019-DET-train/images # 6471 images
val: ../VisDrone/VisDrone2019-DET-val/images # 548 images
test: ../VisDrone/VisDrone2019-DET-test-dev/images # 1610 images

# number of classes
nc: 10

# class names
names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ]


# download command/URL (optional) --------------------------------------------------------------------------------------
download: |
import os
from pathlib import Path

from utils.general import download


def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm

def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh

(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
fl.writelines(lines) # write label.txt


# Download
dir = Path('../VisDrone') # dataset directory
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip'
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir)

# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
2 changes: 1 addition & 1 deletion data/voc.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Train command: python train.py --data voc.yaml
# Default dataset location is next to /yolov5:
# Default dataset location is next to YOLOv5:
# /parent_folder
# /VOC
# /yolov5
Expand Down
32 changes: 28 additions & 4 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
import re
import subprocess
import time
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path

import cv2
Expand Down Expand Up @@ -161,18 +163,40 @@ def check_dataset(dict):
if not all(x.exists() for x in val):
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
if s and len(s): # download script
print('Downloading %s ...' % s)
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
print(f'Downloading {s} ...')
torch.hub.download_url_to_file(s, f)
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
else: # bash script
r = os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
elif s.startswith('bash '): # bash script
print(f'Running {s} ...')
r = os.system(s)
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
else: # python script
r = exec(s) # return None
print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
else:
raise Exception('Dataset not found.')


def download(url, dir='.', multi_thread=False):
# Multi-threaded file download function
def download_one(url, dir):
# Download 1 file
f = dir / Path(url).name # filename
print(f'Downloading {url} to {f}...')
torch.hub.download_url_to_file(url, f, progress=True) # download
if f.suffix == '.zip':
os.system(f'unzip -qo {f} -d {dir} && rm {f}') # unzip -quiet -overwrite

dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
if multi_thread:
ThreadPool(8).imap(lambda x: download_one(*x), zip(url, repeat(dir))) # 8 threads
else:
for u in tuple(url) if isinstance(url, str) else url:
download_one(u, dir)


def make_divisible(x, divisor):
# Returns x evenly divisible by divisor
return math.ceil(x / divisor) * divisor
Expand Down