Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Models *.yaml reformat #3875

Merged
merged 1 commit into from
Jul 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 33 additions & 35 deletions models/hub/yolov3-spp.yaml
Original file line number Diff line number Diff line change
@@ -1,51 +1,49 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
- [ 10,13, 16,30, 33,23 ] # P3/8
- [ 30,61, 62,45, 59,119 ] # P4/16
- [ 116,90, 156,198, 373,326 ] # P5/32

# darknet53 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
[ -1, 1, Bottleneck, [ 64 ] ],
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
[ -1, 2, Bottleneck, [ 128 ] ],
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
[ -1, 8, Bottleneck, [ 256 ] ],
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
[ -1, 8, Bottleneck, [ 512 ] ],
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
[ -1, 4, Bottleneck, [ 1024 ] ], # 10
]

# YOLOv3-SPP head
head:
[[-1, 1, Bottleneck, [1024, False]],
[-1, 1, SPP, [512, [5, 9, 13]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[ [ -1, 1, Bottleneck, [ 1024, False ] ],
[ -1, 1, SPP, [ 512, [ 5, 9, 13 ] ] ],
[ -1, 1, Conv, [ 1024, 3, 1 ] ],
[ -1, 1, Conv, [ 512, 1, 1 ] ],
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)

[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[ -2, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
[ -1, 1, Bottleneck, [ 512, False ] ],
[ -1, 1, Bottleneck, [ 512, False ] ],
[ -1, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)

[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[ -2, 1, Conv, [ 128, 1, 1 ] ],
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
[ -1, 1, Bottleneck, [ 256, False ] ],
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)

[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
]
50 changes: 24 additions & 26 deletions models/hub/yolov3-tiny.yaml
Original file line number Diff line number Diff line change
@@ -1,41 +1,39 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,14, 23,27, 37,58] # P4/16
- [81,82, 135,169, 344,319] # P5/32
- [ 10,14, 23,27, 37,58 ] # P4/16
- [ 81,82, 135,169, 344,319 ] # P5/32

# YOLOv3-tiny backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [16, 3, 1]], # 0
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
[-1, 1, Conv, [32, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
[-1, 1, Conv, [512, 3, 1]],
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
[ [ -1, 1, Conv, [ 16, 3, 1 ] ], # 0
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 1-P1/2
[ -1, 1, Conv, [ 32, 3, 1 ] ],
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 3-P2/4
[ -1, 1, Conv, [ 64, 3, 1 ] ],
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 5-P3/8
[ -1, 1, Conv, [ 128, 3, 1 ] ],
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 7-P4/16
[ -1, 1, Conv, [ 256, 3, 1 ] ],
[ -1, 1, nn.MaxPool2d, [ 2, 2, 0 ] ], # 9-P5/32
[ -1, 1, Conv, [ 512, 3, 1 ] ],
[ -1, 1, nn.ZeroPad2d, [ [ 0, 1, 0, 1 ] ] ], # 11
[ -1, 1, nn.MaxPool2d, [ 2, 1, 0 ] ], # 12
]

# YOLOv3-tiny head
head:
[[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
[ [ -1, 1, Conv, [ 1024, 3, 1 ] ],
[ -1, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 15 (P5/32-large)

[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
[ -2, 1, Conv, [ 128, 1, 1 ] ],
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
[ -1, 1, Conv, [ 256, 3, 1 ] ], # 19 (P4/16-medium)

[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
[ [ 19, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P4, P5)
]
68 changes: 33 additions & 35 deletions models/hub/yolov3.yaml
Original file line number Diff line number Diff line change
@@ -1,51 +1,49 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
- [ 10,13, 16,30, 33,23 ] # P3/8
- [ 30,61, 62,45, 59,119 ] # P4/16
- [ 116,90, 156,198, 373,326 ] # P5/32

# darknet53 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
[ [ -1, 1, Conv, [ 32, 3, 1 ] ], # 0
[ -1, 1, Conv, [ 64, 3, 2 ] ], # 1-P1/2
[ -1, 1, Bottleneck, [ 64 ] ],
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 3-P2/4
[ -1, 2, Bottleneck, [ 128 ] ],
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 5-P3/8
[ -1, 8, Bottleneck, [ 256 ] ],
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 7-P4/16
[ -1, 8, Bottleneck, [ 512 ] ],
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P5/32
[ -1, 4, Bottleneck, [ 1024 ] ], # 10
]

# YOLOv3 head
head:
[[-1, 1, Bottleneck, [1024, False]],
[-1, 1, Conv, [512, [1, 1]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[ [ -1, 1, Bottleneck, [ 1024, False ] ],
[ -1, 1, Conv, [ 512, [ 1, 1 ] ] ],
[ -1, 1, Conv, [ 1024, 3, 1 ] ],
[ -1, 1, Conv, [ 512, 1, 1 ] ],
[ -1, 1, Conv, [ 1024, 3, 1 ] ], # 15 (P5/32-large)

[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[ -2, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P4
[ -1, 1, Bottleneck, [ 512, False ] ],
[ -1, 1, Bottleneck, [ 512, False ] ],
[ -1, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 1, Conv, [ 512, 3, 1 ] ], # 22 (P4/16-medium)

[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[ -2, 1, Conv, [ 128, 1, 1 ] ],
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3
[ -1, 1, Bottleneck, [ 256, False ] ],
[ -1, 2, Bottleneck, [ 256, False ] ], # 27 (P3/8-small)

[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
[ [ 27, 22, 15 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
]
50 changes: 24 additions & 26 deletions models/hub/yolov5-fpn.yaml
Original file line number Diff line number Diff line change
@@ -1,42 +1,40 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
- [ 10,13, 16,30, 33,23 ] # P3/8
- [ 30,61, 62,45, 59,119 ] # P4/16
- [ 116,90, 156,198, 373,326 ] # P5/32

# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 6, BottleneckCSP, [1024]], # 9
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
[ -1, 3, Bottleneck, [ 128 ] ],
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
[ -1, 9, BottleneckCSP, [ 256 ] ],
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
[ -1, 9, BottleneckCSP, [ 512 ] ],
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
[ -1, 6, BottleneckCSP, [ 1024 ] ], # 9
]

# YOLOv5 FPN head
head:
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
[ [ -1, 3, BottleneckCSP, [ 1024, False ] ], # 10 (P5/32-large)

[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
[ -1, 1, Conv, [ 512, 1, 1 ] ],
[ -1, 3, BottleneckCSP, [ 512, False ] ], # 14 (P4/16-medium)

[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
[ -1, 1, Conv, [ 256, 1, 1 ] ],
[ -1, 3, BottleneckCSP, [ 256, False ] ], # 18 (P3/8-small)

[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
[ [ 18, 14, 10 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
]
4 changes: 1 addition & 3 deletions models/hub/yolov5-p2.yaml
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors: 3

# YOLOv5 backbone
Expand Down
4 changes: 1 addition & 3 deletions models/hub/yolov5-p6.yaml
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors: 3

# YOLOv5 backbone
Expand Down
4 changes: 1 addition & 3 deletions models/hub/yolov5-p7.yaml
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
# parameters
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors: 3

# YOLOv5 backbone
Expand Down
Loading