Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix 6 Flake8 issues #6541

Merged
merged 12 commits into from
Feb 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 8 additions & 6 deletions export.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,7 +244,7 @@ def export_saved_model(model, im, file, dynamic,

tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = keras.Model(inputs=inputs, outputs=outputs)
Expand Down Expand Up @@ -407,16 +407,17 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)

# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12

# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
nc, names = model.nc, model.names # number of classes, class names

# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12
assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'

# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
Expand All @@ -438,7 +439,8 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'

for _ in range(2):
y = model(im) # dry runs
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
shape = tuple(y[0].shape) # model output shape
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")

# Exports
f = [''] * 10 # exported filenames
Expand Down
4 changes: 2 additions & 2 deletions models/tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -427,13 +427,13 @@ def run(weights=ROOT / 'yolov5s.pt', # weights path
# PyTorch model
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
y = model(im) # inference
_ = model(im) # inference
model.info()

# TensorFlow model
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
y = tf_model.predict(im) # inference
_ = tf_model.predict(im) # inference

# Keras model
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
Expand Down
6 changes: 0 additions & 6 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -30,19 +30,13 @@ ignore =
E731 # Do not assign a lambda expression, use a def
F405 # name may be undefined, or defined from star imports: module
E402 # module level import not at top of file
F841 # local variable name is assigned to but never used
E741 # do not use variables named β€˜l’, β€˜O’, or β€˜I’
F821 # undefined name name
E722 # do not use bare except, specify exception instead
F401 # module imported but unused
W504 # line break after binary operator
E127 # continuation line over-indented for visual indent
W504 # line break after binary operator
E231 # missing whitespace after β€˜,’, β€˜;’, or β€˜:’
E501 # line too long
F403 # β€˜from module import *’ used; unable to detect undefined names
E302 # expected 2 blank lines, found 0
F541 # f-string without any placeholders


[isort]
Expand Down
53 changes: 27 additions & 26 deletions utils/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def exif_size(img):
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
except Exception:
pass

return s
Expand Down Expand Up @@ -420,7 +420,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
assert cache['version'] == self.cache_version # same version
assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash
except:
except Exception:
cache, exists = self.cache_labels(cache_path, prefix), False # cache

# Display cache
Expand Down Expand Up @@ -514,13 +514,13 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
with Pool(NUM_THREADS) as pool:
pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
desc=desc, total=len(self.img_files))
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
if im_file:
x[im_file] = [l, shape, segments]
x[im_file] = [lb, shape, segments]
if msg:
msgs.append(msg)
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
Expand Down Expand Up @@ -627,8 +627,8 @@ def __getitem__(self, index):
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
for i, lb in enumerate(label):
lb[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes

@staticmethod
Expand All @@ -645,15 +645,15 @@ def collate_fn4(batch):
if random.random() < 0.5:
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
0].type(img[i].type())
l = label[i]
lb = label[i]
else:
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
img4.append(im)
label4.append(l)
label4.append(lb)

for i, l in enumerate(label4):
l[:, 0] = i # add target image index for build_targets()
for i, lb in enumerate(label4):
lb[:, 0] = i # add target image index for build_targets()

return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4

Expand Down Expand Up @@ -743,6 +743,7 @@ def load_mosaic9(self, index):
s = self.img_size
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
random.shuffle(indices)
hp, wp = -1, -1 # height, width previous
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
Expand Down Expand Up @@ -906,30 +907,30 @@ def verify_image_label(args):
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
l = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any([len(x) > 8 for x in l]): # is segment
classes = np.array([x[0] for x in l], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
l = np.array(l, dtype=np.float32)
nl = len(l)
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any([len(x) > 8 for x in lb]): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
lb = np.array(lb, dtype=np.float32)
nl = len(lb)
if nl:
assert l.shape[1] == 5, f'labels require 5 columns, {l.shape[1]} columns detected'
assert (l >= 0).all(), f'negative label values {l[l < 0]}'
assert (l[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {l[:, 1:][l[:, 1:] > 1]}'
_, i = np.unique(l, axis=0, return_index=True)
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
l = l[i] # remove duplicates
lb = lb[i] # remove duplicates
if segments:
segments = segments[i]
msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
else:
ne = 1 # label empty
l = np.zeros((0, 5), dtype=np.float32)
lb = np.zeros((0, 5), dtype=np.float32)
else:
nm = 1 # label missing
l = np.zeros((0, 5), dtype=np.float32)
return im_file, l, shape, segments, nm, nf, ne, nc, msg
lb = np.zeros((0, 5), dtype=np.float32)
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
Expand Down
4 changes: 2 additions & 2 deletions utils/downloads.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,12 +62,12 @@ def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads i
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
tag = response['tag_name'] # i.e. 'v1.0'
except: # fallback plan
except Exception: # fallback plan
assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
try:
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
except:
except Exception:
tag = 'v6.0' # current release

if name in assets:
Expand Down
15 changes: 8 additions & 7 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), insta
for r in requirements:
try:
pkg.require(r)
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
except Exception: # DistributionNotFound or VersionConflict if requirements not met
s = f"{prefix} {r} not found and is required by YOLOv5"
if install:
LOGGER.info(f"{s}, attempting auto-update...")
Expand Down Expand Up @@ -699,16 +699,16 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence

# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 5), device=x.device)
v[:, :4] = l[:, 1:5] # box
lb = labels[xi]
v = torch.zeros((len(lb), nc + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)

# If none remain process next image
Expand Down Expand Up @@ -783,7 +783,8 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op


def print_mutation(results, hyp, save_dir, bucket):
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml'
evolve_csv = save_dir / 'evolve.csv'
evolve_yaml = save_dir / 'hyp_evolve.yaml'
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
keys = tuple(x.strip() for x in keys)
Expand Down
2 changes: 1 addition & 1 deletion utils/loggers/wandb/wandb_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ def download_model_artifact(self, opt):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
modeldir = model_artifact.download()
epochs_trained = model_artifact.metadata.get('epochs_trained')
# epochs_trained = model_artifact.metadata.get('epochs_trained')
total_epochs = model_artifact.metadata.get('total_epochs')
is_finished = total_epochs is None
assert not is_finished, 'training is finished, can only resume incomplete runs.'
Expand Down
1 change: 1 addition & 0 deletions utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU


def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Expand Down
4 changes: 2 additions & 2 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def check_pil_font(font=FONT, size=10):
font = font if font.exists() else (CONFIG_DIR / font.name)
try:
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
except Exception as e: # download if missing
except Exception: # download if missing
check_font(font)
try:
return ImageFont.truetype(str(font), size)
Expand Down Expand Up @@ -340,7 +340,7 @@ def plot_labels(labels, names=(), save_dir=Path('')):
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
Expand Down
8 changes: 4 additions & 4 deletions utils/torch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def git_describe(path=Path(__file__).parent): # path must be a directory
s = f'git -C {path} describe --tags --long --always'
try:
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
except subprocess.CalledProcessError as e:
except subprocess.CalledProcessError:
return '' # not a git repository


Expand All @@ -59,7 +59,7 @@ def device_count():
try:
cmd = 'nvidia-smi -L | wc -l'
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
except Exception as e:
except Exception:
return 0


Expand Down Expand Up @@ -124,7 +124,7 @@ def profile(input, ops, n=10, device=None):
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
except:
except Exception:
flops = 0

try:
Expand All @@ -135,7 +135,7 @@ def profile(input, ops, n=10, device=None):
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception as e: # no backward method
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
Expand Down