Skip to content
This repository has been archived by the owner on Feb 15, 2023. It is now read-only.

Commit

Permalink
GH-22: update report
Browse files Browse the repository at this point in the history
  • Loading branch information
rain1024 committed Jan 14, 2019
1 parent 8018d0e commit 12d3d93
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 65 deletions.
76 changes: 13 additions & 63 deletions docs/technique_report.bib
Original file line number Diff line number Diff line change
@@ -1,64 +1,14 @@
@article{DBLP:journals/corr/Le-Hong16,
author = {Phuong Le{-}Hong},
title = {Vietnamese Named Entity Recognition using Token Regular Expressions
and Bidirectional Inference},
journal = {CoRR},
volume = {abs/1610.05652},
year = {2016},
url = {http://arxiv.org/abs/1610.05652},
archivePrefix = {arXiv},
eprint = {1610.05652},
timestamp = {Wed, 07 Jun 2017 14:42:34 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/Le-Hong16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-1708-07241,
author = {Thai{-}Hoang Pham and
Xuan{-}Khoai Pham and
Tuan{-}Anh Nguyen and
Phuong Le{-}Hong},
title = {{NNVLP:} {A} Neural Network-Based Vietnamese Language Processing Toolkit},
journal = {CoRR},
volume = {abs/1708.07241},
year = {2017},
url = {http://arxiv.org/abs/1708.07241},
archivePrefix = {arXiv},
eprint = {1708.07241},
timestamp = {Tue, 05 Sep 2017 10:03:46 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07241},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-1801-01331,
author = {Thanh Vu and
Dat Quoc Nguyen and
Dai Quoc Nguyen and
Mark Dras and
Mark Johnson},
title = {VnCoreNLP: {A} Vietnamese Natural Language Processing Toolkit},
journal = {CoRR},
volume = {abs/1801.01331},
year = {2018},
url = {http://arxiv.org/abs/1801.01331},
archivePrefix = {arXiv},
eprint = {1801.01331},
timestamp = {Thu, 01 Feb 2018 19:52:26 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1801-01331},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-1803-08463,
author = {Pham Quang Nhat Minh},
title = {A Feature-Based Model for Nested Named-Entity Recognition at {VLSP-2018}
{NER} Evaluation Campaign},
journal = {CoRR},
volume = {abs/1803.08463},
year = {2018},
url = {http://arxiv.org/abs/1803.08463},
archivePrefix = {arXiv},
eprint = {1803.08463},
timestamp = {Wed, 11 Apr 2018 11:12:46 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1803-08463},
bibsource = {dblp computer science bibliography, https://dblp.org}
@inproceedings{Lafferty:2001:CRF:645530.655813,
author = {Lafferty, John D. and McCallum, Andrew and Pereira, Fernando C. N.},
title = {Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data},
booktitle = {Proceedings of the Eighteenth International Conference on Machine Learning},
series = {ICML '01},
year = {2001},
isbn = {1-55860-778-1},
pages = {282--289},
numpages = {8},
url = {http://dl.acm.org/citation.cfm?id=645530.655813},
acmid = {655813},
publisher = {Morgan Kaufmann Publishers Inc.},
address = {San Francisco, CA, USA},
}
Binary file modified docs/technique_report.pdf
Binary file not shown.
6 changes: 4 additions & 2 deletions docs/technique_report.tex
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,11 @@ \subsection{Hệ thống tách từ}

\subsection{Thuật toán Conditional Random Fields}

In order to solve word segmentation problem, there are many algorithms such as HMM, SVM, Riple Down Rules. In our experiments, we use condtional random fields, which yields many success for sequence labeling problem.
Thuật toán Conditional Random Fields (CRFs) ~\cite{Lafferty:2001:CRF:645530.655813} được sử dụng đã tính toán xác suất của chuỗi đầu ra cho bởi chuỗi đầu vào. Xác suất của chuỗi trạng thái $S = <s_1, s_2,..., s_T>$ cho bởi quan sát $O = <o_1, o_2, ..., o_T>$ được tính bởi công thức:

In this session, we brife describe conditional random fields algorithm.
$$P(s|o) = \frac{1}{Z_o} exp( \sum_{t=1}^{T} \sum_{k} \lambda_k x f_k (s_{t-1},s_t,o,t) )$$

trong đó, $f_k (s_{t-1},s_t,o,t)$ làm một hàm đặc trưng ứng với trọng số $\lambda_k$, được học thông qua quá trình huấn luyện.

\subsection{Features}
We propose conditional random fields for this problem.
Expand Down

0 comments on commit 12d3d93

Please sign in to comment.