Skip to content

unkosan/raptgen-visualizer

 
 

Repository files navigation

Supplementary code for "RaptGen: A variational autoencoder with profile hidden Markov model for generative aptamer discovery"

Tested environment

  • Ubuntu == 18.04
  • python == 3.7
  • pytorch == 1.5.0
  • cuda == 10.2

For other requirements, see Pipfile. Also We verified that the codes are runnable in the provided Docker environment (see Dockerfile). Built image is available at natuski/raptgen-gpu on docker hub. The requirements are installable using pipenv with;

% pipenv install

The install time was about 10 minutes on MacbookPro 2020 Core i5 16G. You may also need to install cairo library to generate profile hmm image. For mac OS X, it can be installed by brew install cairo && brew install pango. For Ubuntu, sudo apt-get install -y libcairo2 would work.

Quickstart

All scripts have --help command that prints the options and the arguments if required. For example,

% python scripts/multiple.py --help 
Usage: multiple.py [OPTIONS]

  run experiment with multiple motif

Options:
  --n-motif INTEGER       the number of motifs  [default: 10]
  --n-seq INTEGER         the number of the sequence to generate  [default:
                          10000]

  --seed INTEGER          seed for seqeunce generation reproduction  [default:
                          0]

  --error-rate FLOAT      the ratio to modify sequence  [default: 0.1]
  --epochs INTEGER        the number of training epochs  [default: 1000]
  --threshold INTEGER     the number of epochs with no loss update to stop
                          training  [default: 50]

  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --save-dir PATH         path to save results  [default:
                          out/simlulation/multiple]

  --reg-epochs INTEGER    the number of epochs to conduct state transition
                          regularization  [default: 50]

  --help                  Show this message and exit.  [default: False]

Visualized train logs look like;

% python3 scripts/real.py data/sample/sample.fasta 
saving to /Users/niwn/raptgen/out/real
reading fasta format sequence
adapter info not provided. estimating value
estimated forward adapter len is 5 : AAAAA
estimated reverse adapter len is 5 : GGGGG
filtering with : AAAAA(5N)-20N-GGGGG(5N)
experiment name : 20211128_210830338899
# of sequences -> 100

[1] 139 itr  26.2 <->  26.9 (25.8+ 1.1) of _vae.mdl..:  14%|| 13/100 [02:38<16:16,  11s/it]

The last line indicates the training status. The loss, iteration number, estimated time for training, etc., are shown.

[1] 139 itr  26.2 <->  26.9 (25.8+ 1.1) of _vae.mdl..:  14%|█    | 13/100 [02:38<16:16,  11s/it]
^^^          ^^^^      ^^^^^^^^^^^^^^^^    ^^^^^^^^^^   ^^^        ^^^^^^  ^^^^^^^^^^^   ^^^^^^   
(1)          (2)             (3)              (4)       (5)         (6)        (7)        (8)
  1. the number of epochs with no validation loss update.
  2. train loss
  3. valid (recon+norm.) loss
  4. model name
  5. training progress
  6. number of iteration
  7. elapsed time / estimate time of training
  8. training speed

To evaluate real data

To run raptgen with your sequence files, you have to run real.py, which trains the model which encodes sequence into representation vector.

Train RaptGen using real data

To run the experiment with sequence files, run real.py;

% python3 scripts/real.py data/sample/sample.fasta
help of real.py
Usage: real.py [OPTIONS] SEQPATH

  run experiment with real data

Options:
  --epochs INTEGER        the number of training epochs  [default: 1000]
  --threshold INTEGER     the number of epochs with no loss update to stop
                          training  [default: 50]

  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --save-dir PATH         path to save results  [default: out/real]

  --fwd TEXT              forward adapter
  --rev TEXT              reverse adapter
  --min-count INTEGER     minimum duplication count to pass sequence for
                          training  [default: 1]

  --multi INTEGER         the number of training for multiple times  [default:
                          1]

  --reg-epochs INTEGER    the number of epochs to conduct state transition
                          regularization  [default: 50]

  --embed-size INTEGER    the number of embedding dimension of raptgen model
                          [default: 2]

  --fast / --normal       [experimental] use fast calculation of probability
                          estimation. Output of the decoder shape is different
                          and the visualizers are not implemented.  [default:
                          False]

  --help                  Show this message and exit.  [default: False]

.fa, .fasta, and .fastq files are automatically processed. The default saving folder is out/simlulation/real. The runtime depends on the sequence length and number of unique sequences. The output of this procedure is the followings;

  • trained model : [MODEL_NAME].mdl, such as cnn_phmm_vae.mdl
  • model loss transition: [MODEL_NAME].csv, such as cnn_phmm_var.csv

Encode sequence to achieve latent representation

To embed the sequence, use encode.py, which input sequences and trained model and output sequences' representation vector. While the VAE model encodes the sequence into the latent space in the form of distribution, the output representation vector is the center of this distribution.

Run;

% python3 scripts/encode.py \
    data/sample/sample.fasta \
    results/simulation/multiple/cnn_phmm_vae.mdl \
help of encode.py
Usage: encode.py [OPTIONS] SEQPATH MODELPATH

  achieve sequence vector in embedded space.

Options:
  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --fwd TEXT              forward adapter
  --rev TEXT              reverse adapter
  --save-dir PATH         path to save results  [default: out/encode]

  --fast / --normal       [experimental] use fast calculation of probability
                          estimation. Output of the decoder shape is different
                          and the visualizers are not implemented.  [default:
                          False]

  --help                  Show this message and exit.  [default: False]

This will output sequences' representation vector in the following format;

index,seq,dim1,dim2
0,CGACATGGGCCGCCCAAGGA,0.14,0.08
1,GCGTACCGTAAATCTGTCGG,0.10,0.03
...

The default saving path is out/encode/embed_seq.csv.

Decode latent point to most_probable sequence

To reconstruct sequence from the latent space, use decode.py. Given the model parameters and data points, the raptgen model would sample the most probable sequence from the derived profile HMM. Note that the model length has to be explicitly passed to the script to initialize the model.

% python3 scripts/decode.py \
    out/encode/embed_seq.csv \
    results/simulation/multiple/cnn_phmm_vae.mdl \
    20
help of decode.py
Usage: decode.py [OPTIONS] POS_PATH MODEL_PATH TARGET_LEN

  achieve sequence vector in embedded space.

Options:
  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --save-dir PATH         path to save results  [default: out/decode]

  --embed-dim INTEGER     the embedding dimension of raptgen model  [default:
                          2]

  --eval-max INTEGER      the maximum number of sequence to evaluate most
                          probable sequence  [default: 256]

  --help                  Show this message and exit.  [default: False]

This will input csv with the identifier columns followed by dimension info;

index,dim1,dim2
0,0.14,0.08
1,0.1,0.03
...

and output reconstructed model and log probability of the sequence in the following format;

index,dim1,dim2,pattern,maximum_probable_sequence,log_proba
0,0.14,0.08,*C*T*ATCCCGCCCC,ACGTGATCCCGCCCC,-17.602188110351562
1,0.1,0.03,*C*T*ATCCCGCTGC,ACATGATCCCGCTGC,-16.477264404296875
...

The default saving path is out/decode/decode_output.csv.

Run GMM

To select the center of the GMM populations, run;

% python3 scripts/gmm.py \
    data/sample/sample.fasta \
    data/sample/cnn_phmm_vae.mdl
help of gmm.py
Usage: gmm.py [OPTIONS] SEQPATH MODELPATH

  select gmm center with trained model

Options:
  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --save-dir PATH         path to save results  [default: out/gmm]

  --fwd TEXT              forward adapter
  --rev TEXT              reverse adapter
  --help                  Show this message and exit.  [default: False]

This will output the top 10 sequences to a specified directory (default out/gmm/gmm_seq.csv).

Run BO

To conduct multipoint Bayesian optimization, run;

% python3 scripts/bo.py \
    data/real/A_4R.fastq \
    results/real/A_best.mdl \
    results/real/A_evaled.csv
help of bo.py
Usage: bo.py [OPTIONS] SEQPATH MODELPATH EVALPATH

  run Bayesian optimization with trained model and evaluated results

Options:
  --use-cuda / --no-cuda  use cuda if available  [default: True]
  --cuda-id INTEGER       the device id of cuda to run  [default: 0]
  --fwd TEXT              forward adapter
  --rev TEXT              reverse adapter
  --save-dir PATH         path to save results  [default: out/bo]

  --help                  Show this message and exit.  [default: False]

The evaluates sequences should only hold the random region, and each row should be written in [string],[value] format.

AACGAGAGATGGTAGACCTATCTTTTAGCC,79.0
GTAGAGATTCTGAGGGTTCTCCTGCTATA,107.1
TTTTATAAAAAAGTGTTTAAAAAAGATTCA,-3.6
...

The result contains:

  • The sequence is to be evaluated.
  • The position of the motif embedding.
  • The embedding of the most probable sequence (re_).
% cat out/bo/bo_seq.csv
bo_index,seq,x,y,re_x,re_y
0,GTAGAGATTCTGAGGGTTCTCCTGTTGACC,1.53,-0.13,1.60,-0.50
1,GTAGAGATTCTGAGGGTTCTCCTGTTGCCA,1.56,-0.58,1.62,-0.47

To evaluate multi-/pair- motif for testing

Evaluating multi-motifs

To run the experiment with multiple sequence motifs, run;

% python3 scripts/multiple.py
help of multiple.py
Usage: multiple.py [OPTIONS]

  run experiment with multiple motif

Options:
  --n-motif INTEGER          the number of motifs  [default: 10]
  --n-seq INTEGER            the number of the sequence to generate  [default:
                             10000]

  --seed INTEGER             seed for seqeunce generation reproduction
                             [default: 0]

  --error-rate FLOAT         the ratio to modify sequence  [default: 0.1]
  --epochs INTEGER           the number of training epochs  [default: 1000]
  --threshold INTEGER        the number of epochs with no loss update to stop
                             training  [default: 50]

  --use-cuda / --no-cuda     use cuda if available  [default: True]
  --cuda-id INTEGER          the device id of cuda to run  [default: 0]
  --save-dir PATH            path to save results  [default: /home/natsuki-
                             iwano/raptgen-xilorole/out/simlulation/multiple]

  --reg-epochs INTEGER       the number of epochs to conduct state transition
                             regularization  [default: 50]

  --multi INTEGER            the number of training for multiple times
                             [default: 1]

  --only-cnn / --all-models  train all encoder types or not  [default: False]
  --help                     Show this message and exit.  [default: False]

This outputs models ([MODEL_NAME].mdl) and its training result ([MODEL_NAME].csv) into specified folder (default is out/simlulation/multiple). A single run takes approximately 20 hours on Tesla V100 GPU.

Evaluating paired-motifs

To run the experiment with paired sequence motifs, run;

% python3 scripts/paired.py
help of paired.py
Usage: paired.py [OPTIONS]

  run experiment with paired motif

Options:
  --n-seq INTEGER            the number of the sequence to generate  [default:
                             5000]

  --seed INTEGER             seed for seqeunce generation reproduction
                             [default: 0]

  --epochs INTEGER           the number of training epochs  [default: 1000]
  --threshold INTEGER        the number of epochs with no loss update to stop
                             training  [default: 50]

  --use-cuda / --no-cuda     use cuda if available  [default: True]
  --cuda-id INTEGER          the device id of cuda to run  [default: 0]
  --save-dir PATH            path to save results  [default: /home/natsuki-
                             iwano/raptgen-xilorole/out/simlulation/paired]

  --reg-epochs INTEGER       the number of epochs to conduct state transition
                             regularization  [default: 50]

  --multi INTEGER            the number of training for multiple times
                             [default: 1]

  --only-cnn / --all-models  train all encoder types or not  [default: False]
  --help                     Show this message and exit.  [default: False]

The default saving folder is out/simlulation/paired. A single run takes approximately 10 hours on Tesla V100 GPU.

Directory structure

.
├── data
│   ├── real
│   ├── sample
│   └── simulation
│       ├── multiple
│       └── paired
├── results
│   ├── real
│   └── simulation
│       ├── multiple
│       └── paired
├── scripts
└── src
    ├── data
    ├── models
    └── visualization

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Dockerfile 0.6%