Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implement faster RoPE embedding #238

Merged
merged 1 commit into from
Mar 15, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 29 additions & 19 deletions unsloth/kernels/rope_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def _rope_embedding(
Q, Q_row_stride,
cos, cos_row_stride,
sin, sin_row_stride,
seqlen, head_dim,
seqlen, head_dim, group_size, n_heads,
BACKWARD_PASS: tl.constexpr,
BLOCK_SIZE : tl.constexpr,
):
Expand All @@ -34,7 +34,7 @@ def _rope_embedding(
See our blog post for more info
"""
row_position = tl.program_id(0)
head_position = tl.program_id(1)
group_head_position = tl.program_id(1)
col_offsets = tl.arange(0, BLOCK_SIZE)
half_head_dim = head_dim // 2
mask = col_offsets < half_head_dim
Expand All @@ -44,23 +44,25 @@ def _rope_embedding(
cos1 = tl.load(cos + (row_position % seqlen)*cos_row_stride + \
half_head_dim*0 + col_offsets, mask = mask, other = 0)

# For Gemma - sometimes RoPE must be done in float32 and not bfloat16
Q1 = tl.load(Q + row_position*Q_row_stride + head_position*head_dim + \
half_head_dim*0 + col_offsets, mask = mask, other = 0).to(sin1.dtype)
Q2 = tl.load(Q + row_position*Q_row_stride + head_position*head_dim + \
half_head_dim*1 + col_offsets, mask = mask, other = 0).to(sin1.dtype)

if BACKWARD_PASS:
# See our blog post for more info.
sin1 = -sin1
pass

tl.store(Q + row_position*Q_row_stride + head_position*head_dim + \
half_head_dim*0 + col_offsets,
Q1*cos1 - Q2*sin1, mask = mask)
tl.store(Q + row_position*Q_row_stride + head_position*head_dim + \
half_head_dim*1 + col_offsets,
Q2*cos1 + Q1*sin1, mask = mask)
head_start = group_head_position * group_size
head_end = tl.math.min((head_start + group_size), n_heads)

for i in range(head_start, head_end):
offs_q1 = row_position * Q_row_stride + i * head_dim + col_offsets
offs_q2 = row_position * Q_row_stride + i * head_dim + col_offsets + half_head_dim

# For Gemma - sometimes RoPE must be done in float32 and not bfloat16
Q1 = tl.load(Q + offs_q1, mask = mask, other = 0).to(sin1.dtype)
Q2 = tl.load(Q + offs_q2, mask = mask, other = 0).to(sin1.dtype)

tl.store(Q + offs_q1, Q1*cos1 - Q2*sin1, mask = mask)
tl.store(Q + offs_q2, Q2*cos1 + Q1*sin1, mask = mask)
pass
pass


Expand All @@ -75,12 +77,16 @@ def forward(ctx, Q, cos, sin):

# [TODO] Changing blocksize to head_dim//2 seems to have
# some concurrency / un-deterministic issues.
BLOCK_SIZE, num_warps = calculate_settings(head_dim) # (head_dim//2)
_rope_embedding[(n_rows, n_heads,)](
BLOCK_SIZE, num_warps = calculate_settings(head_dim//2) # (head_dim//2)
group_size = 4 # 4 or 8, too large group_size can hurt performance.
n_groups = triton.cdiv(n_heads, group_size)

grid = (n_rows, n_groups, )
_rope_embedding[grid](
Q, Q.stride(0),
cos, cos.stride(0),
sin, sin.stride(0),
seq_len, head_dim,
seq_len, head_dim, group_size, n_heads,
BACKWARD_PASS = False,
BLOCK_SIZE = BLOCK_SIZE,
num_warps = num_warps,
Expand All @@ -102,11 +108,15 @@ def backward(ctx, dY):
cos = ctx.cos
sin = ctx.sin

_rope_embedding[(n_rows, n_heads,)](
group_size = 4 # 4 or 8, too large group_size can hurt performance.
n_groups = triton.cdiv(n_heads, group_size)

grid = (n_rows, n_groups, )
_rope_embedding[grid](
dY, dY .stride(0),
cos, cos.stride(0),
sin, sin.stride(0),
seq_len, head_dim,
seq_len, head_dim, group_size, n_heads,
BACKWARD_PASS = True,
BLOCK_SIZE = ctx.BLOCK_SIZE,
num_warps = ctx.num_warps,
Expand Down