Skip to content

Implementation of Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference

License

Notifications You must be signed in to change notification settings

utcsilab/ESI_HGE

Repository files navigation

Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference

Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference in Pytorch

Hierarchical Input Latent Output

How to run

Requirements

  • NumPy
  • PyTorch 1.6
  • Scipy
  • networkx
  • json

pip install -r requirements.txt

Installing

  1. Clone the repository:
    $ git clone https://github.com/AliLotfi92/ESI_HGE
    $ cd esihge
  2. Install requirements:
    $ pip install -r requirements.txt

Arguments:

  • lr: learning rate for the inference network
  • dropout: Dropout rate (1 - keep probability).
  • epochs: number of epochs to train the model.
  • c: constant negative curvature
  • K: semi-implicit vi hyperparameters
  • J: semi-implicit vi hyperparameters
  • dataset-str: synthetic, cora, citeseer, or pubmed

Results:

  • Latent codes discoveries alt text

About

Implementation of Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages