Skip to content

Using machine learning methods in Julia to analyze astronomical time series data.

License

Notifications You must be signed in to change notification settings

vabaimova/Astro-ML-in-Julia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Astro-ML-in-Julia

Using machine learning methods in Julia to analyze astronomical time series data.

##Process

  1. Galex data stuff
  2. Split Data for Parallelization
  3. Preprocessing
    1. more descriptive stuff here
    2. more stuff
  4. Combine Features
  5. Normalize and Impute Features
  6. Cluster

##Keywords Extracted from Kepler FITS Files

  • KEPLERID unique Kepler target identifier
  • GRCOLOR [mag] (g-r) color, SDSS bands
  • JKCOLOR [mag] (J-K) color, 2MASS bands
  • GKCOLOR [mag] (g-K) color, SDSS g - 2MASS K
  • TEFF [K] Effective temperature
  • LOGG [cm/s2] log10 surface gravity
  • FEH [log10([Fe/H])] metallicity
  • RADIUS [solar radii] stellar radius

##Things TO DO:

  • Clean up the directory
  • make this documentation more comprehensive
  • create multiplots
    • lightcurve
    • periodgrams
    • phasefolded light curve
  • finish multiplot driver
    • title the plot with KID
    • print the plots to a directory
  • get membership of clustering results
  • look at projections of the feature space
    • plot the targets against two features
  • Clean up drivers and use SETTINGS.txt to make code work for any machine
  • Investigate artifacts on feature plots

About

Using machine learning methods in Julia to analyze astronomical time series data.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published